3,797 research outputs found

    Tool expedites installation of BNC connectors

    Get PDF
    Tool is devised which holds BNC connector during installation and permits tightening nut without damaging connector

    Qualitative study in Loop Quantum Cosmology

    Get PDF
    This work contains a detailed qualitative analysis, in General Relativity and in Loop Quantum Cosmology, of the dynamics in the associated phase space of a scalar field minimally coupled with gravity, whose potential mimics the dynamics of a perfect fluid with a linear Equation of State (EoS). Dealing with the orbits (solutions) of the system, we will see that there are analytic ones, which lead to the same dynamics as the perfect fluid, and our goal is to check their stability, depending on the value of the EoS parameter, i.e., to show whether the other orbits converge or diverge to these analytic solutions at early and late times.Comment: 12 pages, 7 figures. Version accepted for publication in CQ

    Flexible temperature probe for biological systems

    Get PDF
    Probe is sufficiently flexible so that it can be worn comfortably for long periods of time, but relatively rigid to permit easy insertion. Body and electrical leads of small thermistor are imbedded in flexible fluorosilicone matrix contained in vinyl plastic tubing

    Black hole collapse simulated by vacuum fluctuations with a moving semi-transparent mirror

    Full text link
    Creation of scalar massless particles in two-dimensional Minkowski space-time--as predicted by the dynamical Casimir effect--is studied for the case of a semitransparent mirror initially at rest, then accelerating for some finite time, along a trajectory that simulates a black hole collapse (defined by Walker, and Carlitz and Willey), and finally moving with constant velocity. When the reflection and transmission coefficients are those in the model proposed by Barton, Calogeracos, and Nicolaevici [r(w)=-i\alpha/(\w+i\alpha) and s(w)=\w/(\w+i\alpha), with α≥0\alpha\geq 0], the Bogoliubov coefficients on the back side of the mirror can be computed exactly. This allows us to prove that, when α\alpha is very large (case of an ideal, perfectly reflecting mirror) a thermal emission of scalar massless particles obeying Bose-Einstein statistics is radiated from the mirror (a black body radiation), in accordance with results previously obtained in the literature. However, when α\alpha is finite (semitransparent mirror, a physically realistic situation) the striking result is obtained that the thermal emission of scalar massless particles obeys Fermi-Dirac statistics. We also show here that the reverse change of statistics takes place in a bidimensional fermionic model for massless particles, namely that the Fermi-Dirac statistics for the completely reflecting situation will turn into the Bose-Einstein statistics for a partially reflecting, physical mirror.Comment: 13 pages, no figures, version to appear in Physical Review

    Nagel scaling and relaxation in the kinetic Ising model on a n-isotopic chain

    Full text link
    The kinetic Ising model on a n-isotopic chain is considered in the framework of Glauber dynamics. The chain is composed of N segments with n sites, each one occupied by a different isotope. Due to the isotopic mass difference, the n spins in each segment have different relaxation times in the absence of the interactions, and consequently the dynamics of the system is governed by multiple relaxation mechanisms. The solution is obtained in closed form for arbitrary n, by reducing the problem to a set of n coupled equations, and it is shown rigorously that the critical exponent z is equal to 2. Explicit results are obtained numerically for any temperature and it is also shown that the dynamic susceptibility satisfies the new scaling (Nagel scaling) proposed for glass-forming liquids. This is in agreement with our recent results (L. L. Goncalves, M. Lopez de Haro, J. Taguena-Martinez and R. B. Stinchcombe, Phys. Rev. Lett. 84, 1507 (2000)), which relate this new scaling function to multiple relaxation processes.Comment: 4 pages, 2 figures, presented at Ising Centennial Colloquium, to be published in the Proceedings (Brazilian Journal of Physics.

    On the liquid-glass transition line in monatomic Lennard-Jones fluids

    Full text link
    A thermodynamic approach to derive the liquid-glass transition line in the reduced temperature vs reduced density plane for a monatomic Lennard-Jones fluid is presented. The approach makes use of a recent reformulation of the classical perturbation theory of liquids [M. Robles and M. L\'opez de Haro, Phys. Chem. Chem. Phys. {\bf 3}, 5528 (2001)] which is at grips with a rational function approximation for the Laplace transform of the radial distribution function of the hard-sphere fluid. The only input required is an equation of state for the hard-sphere system. Within the Mansoori-Canfield/Rasaiah-Stell variational perturbation theory, two choices for such an equation of state, leading to a glass transition for the hard-sphere fluid, are considered. Good agreement with the liquid-glass transition line derived from recent molecular dynamic simulations [Di Leonardo et al., Phys. Rev. Lett. {\bf 84}, 6054(2000)] is obtained.Comment: 4 pages, 2 figure
    • …
    corecore