20 research outputs found
Cold Feedback in Cooling-Flow Galaxy Clusters
We put forward an alternative view to the Bondi-driven feedback between
heating and cooling of the intra-cluster medium (ICM) in cooling flow galaxies
and clusters. We adopt the popular view that the heating is due to an active
galactic nucleus (AGN), i.e. a central black hole accreting mass and launching
jets and/or winds. We propose that the feedback occurs with the entire cool
inner region (5-30 kpc). A moderate cooling flow does exist here, and
non-linear over-dense blobs of gas cool fast and are removed from the ICM
before experiencing the next major AGN heating event. Some of these blobs may
not accrete on the central black hole, but may form stars and cold molecular
clouds. We discuss the conditions under which the dense blobs may cool to low
temperatures and feed the black hole.Comment: 6 pages, no figures, to appear in the Proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching
(Germany
SorCS2 facilitates release of endostatin from astrocytes and controls post-stroke angiogenesis
SorCS2 is an intracellular sorting receptor of the VPS10P domain receptor gene family recently implicated in oxidative stress response. Here, we interrogated the relevance of stress-related activities of SorCS2 in the brain by exploring its role in ischemic stroke in mouse models and in patients. Although primarily seen in neurons in the healthy brain, expression of SorCS2 was massively induced in astrocytes surrounding the ischemic core in mice following stroke. Post-stroke induction was likely a result of increased levels of transforming growth factor β1 in damaged brain tissue, inducing Sorcs2 gene transcription in astrocytes but not neurons. Induced astrocytic expression of SorCS2 was also seen in stroke patients, substantiating the clinical relevance of this observation. In astrocytes in vitro and in the mouse brain in vivo, SorCS2 specifically controlled release of endostatin, a factor linked to post-stroke angiogenesis. The ability of astrocytes to release endostatin acutely after stroke was lost in mice deficient for SorCS2, resulting in a blunted endostatin response which coincided with impaired vascularization of the ischemic brain. Our findings identified activated astrocytes as a source for endostatin in modulation of post-stroke angiogenesis, and the importance of the sorting receptor SorCS2 in this brain stress response
Energetics and Possible Formation and Decay Mechanisms of Vortices in Helium Nanodroplets
The energy and angular momentum of both straight and curved vortex states of
a helium nanodroplet are examined as a function of droplet size. For droplets
in the size range of many experiments, it is found that during the pickup of
heavy solutes, a significant fraction of events deposit sufficient energy and
angular momentum to form a straight vortex line. Curved vortex lines exist down
to nearly zero angular momentum and energy, and thus could in principle form in
almost any collision. Further, the coalescence of smaller droplets during the
cooling by expansion could also deposit sufficient angular momentum to form
vortex lines. Despite their high energy, most vortices are predicted to be
stable at the final temperature (0.38 K) of helium nanodroplets due to lack of
decay channels that conserve both energy and angular momentum.Comment: 10 pages, 8 figures, RevTex 4, submitted to Phys. Rev.
Water savings in irrigated potato production by varying hill-furrow or bed-furrow configuration
Current agronomic practices for potato production in the irrigated areas of southern Alberta involve a hill/furrow configuration that was adopted from elsewhere, and designed to shed rainfall away from the hill and into the furrow. However, the principal intent of supplemental irrigation is to capture as much of the applied water into the hill, where the potato tubers and roots are located, and minimize water accumulating in the furrow. A three-year project began in 2006 to quantify the potential irrigation water savings of altered hill shapes for potato production. The three treatments (standard hill, flat-topped hill, and double-planted wide-bed) were arranged in a randomized strip plot design replicated four times. Soil water in each treatment was generally kept between 60 and 90% of available. A fourth treatment, triple-planted wide bed, was added to the project in 2008. The irrigation requirements to maintain the treatments were 487, 442, and 449mm for the standard hill, flat-topped hill, and double-planted bed, respectively, in 2006 and 442, 408 and 411mm for the same treatments in 2007. This translates into approximately 10% less irrigation water required for the flat-topped hill shape compared to the standard hill shape. The flat-topped hill shape required 5.0% more irrigation than the standard hill in 2008, but the double and triple-planted wide beds required 8.0 and 9.9%, respectively, less irrigation water than the standard. Although not always statistically significant, water use efficiency was greater in all years for the altered bed shapes compared to the standard hill geometry. Greater water use efficiency can be interpreted as more of the applied water infiltrated into the hill, where the potato plant could use it for transpiration and tuber development. Total yield was greater in 2006 for both the flat-topped hill (72.3Mgha-1) and wide-bed hill (69.2Mgha-1) compared to the standard hill (61.4Mgha-1); however, the treatments were not significantly different. Significantly greater marketable yield was realized from the flat-topped hill treatment in 2006. This treatment also had a significantly greater number of marketable size tubers. In 2007, there were no significant differences in total yield; however, the standard and flat-topped treatments had a significantly greater number and yield of tubers in the 113-170g size category. Significant differences in total yield were found in 2008. The triple-planted wide bed had significantly greater yield in the smaller size categories compared to the standard treatment and significantly greater total tuber numbers than the other treatments, but the increase was in the smaller size categories, less than 170g. There were no significant differences among the treatments in yield or total number of tubers in the size categories greater than 171g in 2008.Potato Water use efficiency Irrigation Hillshape
Hinge-Like Motions in RNA Kink-Turns: The Role of the Second A-Minor Motif and Nominally Unpaired Bases
Kink-turn (K-turn) motifs are asymmetric internal loops found at conserved positions in diverse RNAs, with sharp bends in phosphodiester backbones producing V-shaped structures. Explicit-solvent molecular dynamics simulations were carried out for three K-turns from 23S rRNA, i.e., Kt-38 located at the base of the A-site finger, Kt-42 located at the base of the L7/L12 stalk, and Kt-58 located in domain III, and for the K-turn of human U4 snRNA. The simulations reveal hinge-like K-turn motions on the nanosecond timescale. The first conserved A-minor interaction between the K-turn stems is entirely stable in all simulations. The angle between the helical arms of Kt-38 and Kt-42 is regulated by local variations of the second A-minor (type I) interaction between the stems. Its variability ranges from closed geometries to open ones stabilized by insertion of long-residency waters between adenine and cytosine. The simulated A-minor geometries fully agree with x-ray data. Kt-58 and Kt-U4 exhibit similar elbow-like motions caused by conformational change of the adenosine from the nominally unpaired region. Despite the observed substantial dynamics of K-turns, key tertiary interactions are stable and no sign of unfolding is seen. We suggest that some K-turns are flexible elements mediating large-scale ribosomal motions during the protein synthesis cycle