127 research outputs found

    Effects of the Selective Protein Kinase C Inhibitor, Ro 31-7549, on the Proliferation of Cultured Mouse Epidermal Keratinocytes

    Get PDF
    We have investigated the effects of Ro 31-7549, a selective protein kinase C (PKC) inhibitor, on DNA synthesis and proliferation in two primary mouse epidermal keratinocyte culture systems. In differentiating keratinocytes incubated in medium containing 10% serum and high calcium (approximately 0.5 mM), Ro 31-7549 blocked the inhibitory effect of the phorbol ester 12-0-tetradecanoyl-13-acetate (TPA) (a PKC activator) on keratinocyte DNA synthesis at 24 h [50% maximal response concentration (EC50) = 1 μM], consistent with inhibition of PKC-mediated differentiation. Continuous treatment of the differentiative culture system with the PKC inhibitor resulted in a marked (fourfold) stimulation of [3H]thymidine incorporation at day 7 of exposure, with an EC50 of 0.25 μM. The potencies of these effects of Ro 31-7549 are comparable to that reported for inhibition of TPA-induced platelet 47-kD protein phosphorylation [50% inhibitory concentration (IC50) = 4.4 μM]. The time course of [3H]thymidine incorporation indicated that Ro 31-7549 did not directly stimulate DNA synthesis but instead prevented the loss of proliferative capacity associated with continued culture in this medium. Maximal stimulation (2.6 times) of DNA synthesis was observed on day 4, whereas DNA synthesis at day 1 was unaffected. In a highly proliferative culture system using serum-free medium containing 25 μM calcium, TPA dose-dependently inhibited proliferation with an IC50 of approximately 0.3 nM. This antiproliferative effect of TPA was largely reversed by 0.1 M Ro 31-7549. In the proliferative culture system, 0.75 M Ro 31-7549 also essentially reversed the inhibition of proliferation caused by switching to high (1.0 mM) calcium. These results suggest that the loss of proliferative capacity in differentiating epidermal keratinocyte cultures maybe mediated, at least in part, by PKC

    Three years of Fermi GBM Earth Occultation Monitoring: Observations of Hard X-ray/Soft Gamma-Ray Sources

    Full text link
    The Gamma ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary neutron star systems, 12 black hole binaries, 12 active galaxies, 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black-hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found at http://heastro.phys.lsu.edu/gbm/.Comment: 24 pages, 12 figures, accepted for publication in ApJ

    Initial low/hard state, multiple jet ejections and X-ray/radio correlations during the outburst of XTE J1859+226

    Full text link
    We have studied the 1999 soft X-ray transient outburst of XTE J1859+226 at radio and X-ray wavelengths. The event was characterised by strong variability in the disc, corona and jet - in particular, a number of radio flares (ejections) took place and seemed well-correlated with hard X-ray events. Apparently unusual for the `canonical soft' X-ray transient, there was an initial period of low/hard state behaviour during the rise from quiescence but prior to the peak of the main outburst - we show that not only could this initial low/hard state be an ubiquitous feature of soft X-ray transient outbursts but that it could also be extremely important in our study of outburst mechanisms.Comment: 12 pages, Accepted for publication in MNRA

    The Molecular Phylogenetic Signature of Clades in Decline

    Get PDF
    Molecular phylogenies have been used to study the diversification of many clades. However, current methods for inferring diversification dynamics from molecular phylogenies ignore the possibility that clades may be decreasing in diversity, despite the fact that the fossil record shows this to be the case for many groups. Here we investigate the molecular phylogenetic signature of decreasing diversity using the most widely used statistic for inferring diversity dynamics from molecular phylogenies, the γ statistic. We show that if a clade is in decline its molecular phylogeny may show evidence of the decrease in the diversification rate that occurred between its diversification and decline phases. The ability to detect the change in diversification rate depends largely on the ratio of the speciation rates of the diversification and decline phases, the higher the ratio the stronger the signal of the change in diversification rate. Consequently, molecular phylogenies of clades in relative rapid decline do not carry a signature of their decreasing diversification. Further, the signal of the change in diversification rate, if present, declines as the diversity drop. Unfortunately, the molecular signature of clades in decline is the same as the signature produced by diversity dependent diversification. Given this similarity, and the inability of current methods to detect declining diversity, it is likely that some of the extant clades that show a decrease in diversification rate, currently interpreted as evidence for diversity dependent diversification, are in fact in decline. Unless methods can be developed that can discriminate between the different modes of diversification, specifically diversity dependent diversification and declining diversity, we will need the fossil record, or data from some other source, to distinguish between these very different diversity trajectories

    Mechanism-related circulating proteins as biomarkers for clinical outcome in patients with unresectable hepatocellular carcinoma receiving sunitinib

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several proteins that promote angiogenesis are overexpressed in hepatocellular carcinoma (HCC) and have been implicated in disease pathogenesis. Sunitinib has antiangiogenic activity and is an oral multitargeted inhibitor of vascular endothelial growth factor receptors (VEGFRs)-1, -2, and -3, platelet-derived growth factor receptors (PDGFRs)-α and -β, stem-cell factor receptor (KIT), and other tyrosine kinases. In a phase II study of sunitinib in advanced HCC, we evaluated the plasma pharmacodynamics of five proteins related to the mechanism of action of sunitinib and explored potential correlations with clinical outcome.</p> <p>Methods</p> <p>Patients with advanced HCC received a starting dose of sunitinib 50 mg/day administered orally for 4 weeks on treatment, followed by 2 weeks off treatment. Plasma samples from 37 patients were obtained at baseline and during treatment and were analyzed for vascular endothelial growth factor (VEGF)-A, VEGF-C, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT).</p> <p>Results</p> <p>At the end of the first sunitinib treatment cycle, plasma VEGF-A levels were significantly increased relative to baseline, while levels of plasma VEGF-C, sVEGFR-2, sVEGFR-3, and sKIT were significantly decreased. Changes from baseline in VEGF-A, sVEGFR-2, and sVEGFR-3, but not VEGF-C or sKIT, were partially or completely reversed during the first 2-week off-treatment period. High levels of VEGF-C at baseline were significantly associated with Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease control, prolonged time to tumor progression (TTP), and prolonged overall survival (OS). Baseline VEGF-C levels were an independent predictor of TTP by multivariate analysis. Changes from baseline in VEGF-A and sKIT at cycle 1 day 14 or cycle 2 day 28, and change in VEGF-C at the end of the first off-treatment period, were significantly associated with both TTP and OS, while change in sVEGFR-2 at cycle 1 day 28 was an independent predictor of OS.</p> <p>Conclusions</p> <p>Baseline plasma VEGF-C levels predicted disease control (based on RECIST) and were positively associated with both TTP and OS in this exploratory analysis, suggesting that this VEGF family member may have utility in predicting clinical outcome in patients with HCC who receive sunitinib.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00247676">NCT00247676</a></p

    The Stem Cell Research Environment:A Patchwork of Patchworks

    Get PDF
    Few areas of recent research have received as much focus or generated as much excitement and debate as stem cell research. Hope for the therapeutic promise of this field has been matched by social concern associated largely with the sources of stem cells and their uses. This interplay between promise and controversy has contributed to the enormous variation that exists among the environments in which stem cell research is conducted throughout the world. This variation is layered upon intra-jurisdictional policies that are also often complex and in flux, resulting in what we term a 'patchwork of patchworks'. This patchwork of patchworks and its implications will become increasingly important as we enter this new era of stem cell research. The current progression towards translational and clinical research among international collaborators serves as a catalyst for identifying potential policy conflict and makes it imperative to address jurisdictional variability in stem cell research environments. The existing patchworks seen in contemporary stem cell research environments provide a valuable opportunity to consider how variations in regulations and policies across and within jurisdictions influence research efficiencies and directions. In one sense, the stem cell research context can be viewed as a living experiment occurring across the globe. The lessons to be gleaned from examining this field have great potential for broad-ranging general science policy application

    From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management

    Get PDF
    Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions
    corecore