22 research outputs found

    Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus)

    Get PDF
    The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds

    Evaluation of two minimally invasive techniques for electroencephalogram recording in wild or freely behaving animals.

    No full text
    Insight into the function of sleep may be gained by studying animals in the ecological context in which sleep evolved. Until recently, technological constraints prevented electroencephalogram (EEG) studies of animals sleeping in the wild. However, the recent development of a small recorder (Neurologger 2) that animals can carry on their head permitted the first recordings of sleep in nature. To facilitate sleep studies in the field and to improve the welfare of experimental animals, herein, we test the feasibility of using minimally invasive surface and subcutaneous electrodes to record the EEG in barn owls. The EEG and behaviour of four adult owls in captivity and of four chicks in a nest box in the field were recorded. We scored a 24-h period for each adult bird for wakefulness, slow-wave sleep (SWS), and rapid-eye movement (REM) sleep using 4 s epochs. Although the quality and stability of the EEG signals recorded via subcutaneous electrodes were higher when compared to surface electrodes, the owls' state was readily identifiable using either electrode type. On average, the four adult owls spent 13.28 h awake, 9.64 h in SWS, and 1.05 h in REM sleep. We demonstrate that minimally invasive methods can be used to measure EEG-defined wakefulness, SWS, and REM sleep in owls and probably other animals
    corecore