28 research outputs found

    The social networks of manureshed management

    Get PDF
    Manureshed management—the strategic use of manure nutrients that prioritizes recycling between livestock systems and cropping systems—provides a comprehensive framework for sustainable nutrient management that necessitates the collaboration of many actors. Understanding the social dimensions of collaboration is critical to implement the strategic and technological requirements of functional manuresheds. To improve this understanding, we identified aspirational networks of actors involved in manureshed management across local, regional, and national scales, principally in the United States, elucidating key relationships and highlighting the breadth of interactions essential to successful manureshed management. We concluded that, although the social networks vary with scale, the involvement of a common core set of actors and relationships appears to be universal to the successful integration of modern livestock and crop production systems necessary for functional manuresheds. Our analysis also reveals that, in addition to agricultural producers, local actors in extension and advisory services and private and public sectors ensure optimal outcomes at all scales. For manureshed management to successfully integrate crop and livestock production and sustainably manage manure nutrient resources at each scale, the full complement of actors identified in these social networks is critical to generate innovation and ensure collaboration continuity

    Land Application of Organic Fertilizers or Amendments

    Get PDF
    4 pp., 5 photosApplying organic materials to your land can add beneficial nutrients to the soil. But when too much is applied, or when it is applied incorrectly, organic material can cause environmental problems. This publication will help you select the proper application rate, calibrate equipment so that the correct rate is applied, and learn how location, water, soil and tillage can all affect the process

    Riparian buffer systems for Oklahoma

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311.Biosystems and Agricultural Engineerin

    Expansion of the MANAGE Database with Forest and Drainage Studies

    Get PDF
    The “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was published in 2006 to expand an early 1980s compilation of nutrient export (load) data from cultivated and pasture/range land at the field or farm scale. Then in 2008, MANAGE was updated with 15 additional studies, and nitrogen (N) and phosphorus (P) concentrations in runoff were added. Since then, MANAGE has undergone significant expansion adding N and P water quality along with relevant management and site characteristic data from: (1) 30 runoff studies from forested land uses, (2) 91 drainage water quality studies from drained land, and (3) 12 additional runoff studies from cultivated and pasture/range land uses. In this expansion, an application timing category was added to the existing fertilizer data categories (rate, placement, formulation) to facilitate analysis of 4R Nutrient Stewardship, which emphasizes right fertilizer source, rate, time, and place. In addition, crop yield and N and P uptake data were added, although this information was only available for 21 and 7% of studies, respectively. Inclusion of these additional data from cultivated, pasture/range, and forest land uses as well as artificially drained agricultural land should facilitate expanded spatial analyses and improved understanding of regional differences, management practice effectiveness, and impacts of land use conversions and management techniques

    \u3ci\u3eEscherichia coli\u3c/i\u3e Antimicrobial Resistance Variability In Water Runoff and Soil From a Remnant Native Prairie, and Improved Pasture, and a Cultivated Agricultural Watershed

    Get PDF
    Although many previous studies have examined patterns of antimicrobial resistance (AMR) and multidrug resistance (MDR) from domestic animals and farm environments, comparatively little is known about the environmental sources and natural reservoirs of AMR and MDR. In this study, we collected stormwater runoff and soil samples from three watersheds in Texas. Escherichia coli (E. coli) were enumerated, isolated, and analyzed for resistance patterns. E. coli from all sites, irrespective of land use, displayed the presence of AMR/MDR. Higher levels of AMR/MDR were observed in water compared to soil. More isolates were resistant to cephalothin than other antibiotics. For water isolates, 94% was resistant to cephalothin, 27% to tetracycline, and 15% to ampicillin. Across all sites, a large percentage of water isolates demonstrated MDR with 34% resistant to ≥2 antibiotics and 11% to ≥3 antibiotics. All AMR soil isolates were resistant to cephalothin (87% of the total soil isolates), but only 8.9% were MDR. High cephalothin resistance observed in both soil and water suggests the presence of native, cephalothin-resistant E. coli. Higher MDR observed within water compared to the soil populations suggests that resistance sources other than soil, such as more recent fecal depositions as opposed to residual AMR in soil, could have contributed to higher antibiotic-resistant E. coli in runoff

    Bacteria growth, persistence, and source assessment in rural Texas landscapes and streams

    Get PDF
    Bacteria water quality impairments are the most common water quality issue in Texas and are a considerable source of impairments nationally. Fecal indicator bacteria such as Escherichia coli (E. coli) and enterococci derived from birds and mammals are used as a measure of a waterbody’s ability to support contact recreation. Relationships between monitored levels of E. coli and enterococcus have been established with human contraction of a gastrointestinal illness from pathogenic organisms and serve as the basis for water quality standards that protect contact recreation. Stakeholder processes are often undertaken to improve the quality of impaired waters, define pollutant sources, and develop strategies to reduce bacteria loading to streams. Questions are often asked during these processes regarding the fate and transport of these bacteria in various environmental settings, the distribution of E. coli sources across watersheds, and how they respond to changes in water quality. Past research conducted has worked to address these questions; however, additional work is warranted. Re-created stream mesocosms were used to develop an improved understanding of E. coli fate and transport in the environment under controlled treatment conditions. Nutrient amendments that mimic increases in nutrient concentrations seen from nonpoint source pollutant loadings and wastewater effluent loadings were applied to determine if E. coli concentrations would change as a result of the amendments and alter growth or decay relative to a control mesocosm. No E. coli growth response was observed in any trial, and no significant differences in decay rates were observed either. This suggests that a single nutrient addition to a stream environment is not sufficient to produce a growth response in the ambient E. coli community. Soil and runoff samples collected from three controlled land uses were processed to enumerate E. coli and allow individual colonies to be isolated and fingerprinted for bacteria source tracking (BST). E. coli source contributions to native prairie, managed hay pasture, and cultivated cropland sites were determined using 7-way source identification splits. In all cases, wildlife were found to be the primary E. coli contributor. Unexpectedly, cattle and humans were identified as sources of E. coli in runoff and soils from some of the sites. Cattle are not actively stocked nor have they been stocked at any of these sites for at least three years, and no known sources of human fecal deposition have occurred in these watersheds. This demonstrates the complex diversity of E. coli in unimpacted environments and the potential for bacteria to be translocated by transmission vectors.Funding support for this project was provided through a State Nonpoint Source Grant from the Texas State Soil and Water Conservation Boar

    The role of field-scale management on soil and surface runoff C/N/P stoichiometry

    Get PDF
    Agricultural runoff is an important contributor to water quality impairment. This study was conducted to evaluate the potential role of field-scale management on carbon (C), nitrogen (N), and phosphorus (P) stoichiometry in soils and runoff from agricultural fields. Cultivated and pasture fields at the Riesel watersheds in central Texas were used for this analysis, and nutrients were transformed to evaluate relative to the Redfield ratio (106 C/16 N/1 P). Using the Redfield ratio, all soil samples were P depleted relative to C and N. The majority of stormflow and baseflow runoff samples contained 9 to 19% Redfield N relative to C and P. Shifting from inorganic fertilizer application to poultry litter as a fertilizer source resulted in increased absolute C, N, and P concentrations in stormflow and baseflow runoff. Increasing rates of poultry litter application increased the Redfield P relative to Redfield C, whereas Redfield N remained relatively constant at roughly 9 to 11% in stormflow runoff from cultivated fields. This study shows how land use and management can affect C/N/P stoichiometry in stormflow and baseflow runoff

    Riparian area: Management handbook

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
    corecore