49 research outputs found

    The risk of menstrual abnormalities after tubal sterilization: a case control study

    Get PDF
    BACKGROUND: Tubal sterilization is the method of family planning most commonly used. The existence of the post-tubal-ligation syndrome of menstrual abnormalities has been the subject of debate for decades. METHODS: In a cross-sectional study, 112 women with the history of Pomeroy type of tubal ligation achieved by minilaparatomy as the case group and 288 women with no previous tubal ligation as the control group were assessed for menstrual abnormalities. RESULTS: Menstrual abnormalities were not significantly different between the case and control groups (p = 0.824). The abnormal uterine bleeding frequency differences in two different age groups (30–39 and 40–45 years old) were statistically significant (p = 0.0176). CONCLUSION: Tubal sterilization does not cause menstrual irregularities

    How good is probabilistic record linkage to reconstruct reproductive histories? Results from the Aberdeen children of the 1950s study

    Get PDF
    BACKGROUND: Probabilistic record linkage is widely used in epidemiology, but studies of its validity are rare. Our aim was to validate its use to identify births to a cohort of women, being drawn from a large cohort of people born in Scotland in the early 1950s. METHODS: The Children of the 1950s cohort includes 5868 females born in Aberdeen 1950–56 who were in primary schools in the city in 1962. In 2001 a postal questionnaire was sent to the cohort members resident in the UK requesting information on offspring. Probabilistic record linkage (based on surname, maiden name, initials, date of birth and postcode) was used to link the females in the cohort to birth records held by the Scottish Maternity Record System (SMR 2). RESULTS: We attempted to mail a total of 5540 women; 3752 (68%) returned a completed questionnaire. Of these 86% reported having had at least one birth. Linkage to SMR 2 was attempted for 5634 women, one or more maternity records were found for 3743. There were 2604 women who reported at least one birth in the questionnaire and who were linked to one or more SMR 2 records. When judged against the questionnaire information, the linkage correctly identified 4930 births and missed 601 others. These mostly occurred outside of Scotland (147) or prior to full coverage by SMR 2 (454). There were 134 births incorrectly linked to SMR 2. CONCLUSION: Probabilistic record linkage to routine maternity records applied to population-based cohort, using name, date of birth and place of residence, can have high specificity, and as such may be reliably used in epidemiological research

    Glutamate Induces the Elongation of Early Dendritic Protrusions via mGluRs in Wild Type Mice, but Not in Fragile X Mice

    Get PDF
    Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable. This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3 neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5 signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which may be a critical step to initiate synaptogenesis and stabilize spines

    Forest Plant and Bird Communities in the Lau Group, Fiji

    Get PDF
    We examined species composition of forest and bird communities in relation to environmental and human disturbance gradients on Lakeba (55.9 km²), Nayau (18.4 km²), and Aiwa Levu (1.2 km²), islands in the Lau Group of Fiji, West Polynesia. The unique avifauna of West Polynesia (Fiji, Tonga, Samoa) has been subjected to prehistoric human-caused extinctions but little was previously known about this topic in the Lau Group. We expected that the degree of human disturbance would be a strong determinant of tree species composition and habitat quality for surviving landbirds, while island area would be unrelated to bird diversity.All trees > 5 cm diameter were measured and identified in 23 forest plots of 500 m² each. We recognized four forest species assemblages differentiated by composition and structure: coastal forest, dominated by widely distributed species, and three forest types with differences related more to disturbance history (stages of secondary succession following clearing or selective logging) than to environmental gradients (elevation, slope, rockiness). Our point counts (73 locations in 1 or 2 seasons) recorded 18 of the 24 species of landbirds that exist on the three islands. The relative abundance and species richness of birds were greatest in the forested habitats least disturbed by people. These differences were due mostly to increased numbers of columbid frugivores and passerine insectivores in forests on Lakeba and Aiwa Levu. Considering only forested habitats, the relative abundance and species richness of birds were greater on the small but completely forested (and uninhabited) island of Aiwa Levu than on the much larger island of Lakeba.Forest disturbance history is more important than island area in structuring both tree and landbird communities on remote Pacific islands. Even very small islands may be suitable for conservation reserves if they are protected from human disturbance

    Exopolysaccharide-Independent Social Motility of Myxococcus xanthus

    Get PDF
    Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that “S motility” is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS- cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces

    Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates

    Get PDF
    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes required for saxitoxin synthesis are encoded in the nuclear genomes of dinoflagellates. We sequenced >1.2×106 mRNA transcripts from the two saxitoxin-producing dinoflagellate strains Alexandrium fundyense CCMP1719 and A. minutum CCMP113 using high-throughput sequencing technology. In addition, we used in silico transcriptome analyses, RACE, qPCR and conventional PCR coupled with Sanger sequencing. These approaches successfully identified genes required for saxitoxin-synthesis in the two transcriptomes. We focused on sxtA, the unique starting gene of saxitoxin synthesis, and show that the dinoflagellate transcripts of sxtA have the same domain structure as the cyanobacterial sxtA genes. But, in contrast to the bacterial homologs, the dinoflagellate transcripts are monocistronic, have a higher GC content, occur in multiple copies, contain typical dinoflagellate spliced-leader sequences and eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and non-producing dinoflagellate strains from six different genera for the presence of genomic sxtA homologs. Our results show very good agreement between the presence of sxtA and saxitoxin-synthesis, except in three strains of A. tamarense, for which we amplified sxtA, but did not detect the toxin. Our work opens for possibilities to develop molecular tools to detect saxitoxin-producing dinoflagellates in the environment
    corecore