Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide.
Ingestion of vector species can lead to paralytic shellfish poisoning, a severe
human illness that may lead to paralysis and death. In freshwaters, the toxin is
produced by prokaryotic cyanobacteria; in marine waters, it is associated with
eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is
not produced by dinoflagellates themselves, but by co-cultured bacteria. Here,
we show that genes required for saxitoxin synthesis are encoded in the nuclear
genomes of dinoflagellates. We sequenced >1.2×106 mRNA
transcripts from the two saxitoxin-producing dinoflagellate strains
Alexandrium fundyense CCMP1719 and A.
minutum CCMP113 using high-throughput sequencing technology. In
addition, we used in silico transcriptome analyses, RACE, qPCR
and conventional PCR coupled with Sanger sequencing. These approaches
successfully identified genes required for saxitoxin-synthesis in the two
transcriptomes. We focused on sxtA, the unique starting gene of
saxitoxin synthesis, and show that the dinoflagellate transcripts of
sxtA have the same domain structure as the cyanobacterial
sxtA genes. But, in contrast to the bacterial homologs, the
dinoflagellate transcripts are monocistronic, have a higher GC content, occur in
multiple copies, contain typical dinoflagellate spliced-leader sequences and
eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and
non-producing dinoflagellate strains from six different genera for the presence
of genomic sxtA homologs. Our results show very good agreement
between the presence of sxtA and saxitoxin-synthesis, except in
three strains of A. tamarense, for which we amplified
sxtA, but did not detect the toxin. Our work opens for
possibilities to develop molecular tools to detect saxitoxin-producing
dinoflagellates in the environment