15 research outputs found

    A central support system can facilitate implementation and sustainability of a Classroom-based Undergraduate Research Experience (CURE) in Genomics

    Get PDF
    In their 2012 report, the President\u27s Council of Advisors on Science and Technology advocated replacing standard science laboratory courses with discovery-based research courses -a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates

    Mapping and Functional Characterisation of a CTCF-Dependent Insulator Element at the 3′ Border of the Murine Scl Transcriptional Domain

    Get PDF
    The Scl gene encodes a transcription factor essential for haematopoietic development. Scl transcription is regulated by a panel of cis-elements spread over 55 kb with the most distal 3′ element being located downstream of the neighbouring gene Map17, which is co-regulated with Scl in haematopoietic cells. The Scl/Map17 domain is flanked upstream by the ubiquitously expressed Sil gene and downstream by a cluster of Cyp genes active in liver, but the mechanisms responsible for delineating the domain boundaries remain unclear. Here we report identification of a DNaseI hypersensitive site at the 3′ end of the Scl/Map17 domain and 45 kb downstream of the Scl transcription start site. This element is located at the boundary of active and inactive chromatin, does not function as a classical tissue-specific enhancer, binds CTCF and is both necessary and sufficient for insulator function in haematopoietic cells in vitro. Moreover, in a transgenic reporter assay, tissue-specific expression of the Scl promoter in brain was increased by incorporation of 350 bp flanking fragments from the +45 element. Our data suggests that the +45 region functions as a boundary element that separates the Scl/Map17 and Cyp transcriptional domains, and raise the possibility that this element may be useful for improving tissue-specific expression of transgenic constructs

    A course-based research experience: how benefits change with increased investment in instructional time

    Get PDF
    There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine

    Chromatin and Transcription

    No full text

    The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis

    No full text
    The histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b are required to couple endoreduplication and trichome branching. Mutation of ADA2b also disrupts the relationship between ploidy and leaf cell size. Dynamic chromatin structure has been established as a general mechanism by which gene function is temporally and spatially regulated, but specific chromatin modifier function is less well understood. To address this question, we have investigated the role of the histone acetyltransferase GCN5 and the associated coactivator ADA2b in developmental events in Arabidopsis thaliana. Arabidopsis plants with T-DNA insertions in GCN5 (also known as HAG1) or ADA2b (also known as PROPORZ1) display pleiotropic phenotypes including dwarfism and floral defects affecting fertility. We undertook a detailed characterization of gcn5 and ada2b phenotypic effects in rosette leaves and trichomes to establish a role for epigenetic control in these developmental processes. ADA2b and GCN5 play specific roles in leaf tissue, affecting cell growth and division in rosette leaves often in complex and even opposite directions. Leaves of gcn5 plants display overall reduced ploidy levels, while ada2b-1 leaves show increased ploidy. Endoreduplication leading to increased ploidy is also known to contribute to normal trichome morphogenesis. We demonstrate that gcn5 and ada2b mutants display alterations in the number and patterning of trichome branches, with ada2b-1 and gcn5-1 trichomes being significantly less branched, while gcn5-6 trichomes show increased branching. Elongation of the trichome stalk and branches also vary in different mutant backgrounds, with stalk length having an inverse relationship with branch number. Taken together, our data indicate that, in Arabidopsis, leaves and trichomes ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.</p
    corecore