247 research outputs found

    Reinforcement learning of adaptive online rescheduling timing and computing time allocation

    Get PDF
    Mathematical optimization methods have been developed to a vast variety of complex problems in the field of process systems engineering (e.g., the scheduling of chemical batch processes). However, the use of these methods in online scheduling is hindered by the stochastic nature of the processes and prohibitively long solution times when optimized over long time horizons. The following questions are raised: When to trigger a rescheduling, how much computing resources to allocate, what optimization strategy to use, and how far ahead to schedule? We propose an approach where a reinforcement learning agent is trained to make the first two decisions (i.e., rescheduling timing and computing time allocation). Using neuroevolution of augmenting topologies (NEAT) as the reinforcement learning algorithm, the approach yields, on average, better closed-loop solutions than conventional rescheduling methods on three out of four studied routing problems. We also reflect on expanding the agent's decision-making to all four decisions. (C) 2020 Elsevier Ltd. All rights reserved.Peer reviewe

    Surrogate-based optimization of a periodic rescheduling algorithm

    Get PDF
    Periodic rescheduling is an iterative method for real-time decision-making on industrial process operations. The design of such methods involves high-level when-to-schedule and how-to-schedule decisions, the optimal choices of which depend on the operating environment. The evaluation of the choices typically requires computationally costly simulation of the process, which-if not sufficiently efficient-may result in a failure to deploy the system in practice. We propose the continuous control parameter choices, such as the re-optimization frequency and horizon length, to be determined using surrogate-based optimization. We demonstrate the method on real-time rebalancing of a bike sharing system. Our results on three test cases indicate that the method is useful in reducing the computational cost of optimizing an online algorithm in comparison to the full factorial sampling.Peer reviewe

    Synergistic and Intelligent Process Optimization : First Results and Open Challenges

    Get PDF
    Data science has become an important research topic across scientific disciplines. In Process Systems Engineering, one attempt to create true value from process data is to use it proactively to improve the quality and accuracy of production planning as often a schedule based on statistical average data is outdated already when reaching the plant floor. Thus, due to the hierarchical planning structures, it is difficult to quickly adapt a schedule to changing conditions. This challenge has also been investigated in integration of scheduling and control studies (Touretzky AIChE J. 2017, 63 (66), 1959-1973). The project SINGPRO investigated the merging of big data platforms, machine learning, and data analytics with process planning and scheduling optimization. The goal was to create online, reactive, and anticipative tools for more sustainable and efficient operation. In this article, we discuss selected outcomes of the project and reflect the topic of combining optimization and data science in a broader scope.Peer reviewe

    Optimal maintenance scheduling of a gas engine power plant using generalized disjunctive programming

    Get PDF
    A new continuous-time model for long-term scheduling of a gas engine power plant with parallel units is presented. Gas engines are shut down according to a regular maintenance plan that limits the number of hours spent online. To minimize salary expenditure with skilled labor, a single maintenance team is considered which is unavailable during certain periods of time. Other challenging constraints involve constant minimum and variable maximum power demands. The objective is to maximize the revenue from electricity sales assuming seasonal variations in electricity pricing by reducing idle times and shutdowns in high-tariff periods. By first developing a generalized disjunctive programming model and then applying both big-M and hull reformulation techniques, we reduce the burden of finding the appropriate set of mixed-integer linear constraints. Through the solution of a real-life problem, we show that the proposed formulations are very efficient computationally, while gaining valuable insights about the system

    Data-Driven Approach to Grade Change Scheduling Optimization in a Paper Machine

    Get PDF
    This paper proposes an efficient decision support tool for the optimal production scheduling of a variety of paper grades in a paper machine. The tool is based on a continuous-time scheduling model and generalized disjunctive programming. As the full-space scheduling model corresponds to a large-scale mixed integer linear programming model, we apply data analytics techniques to reduce the size of the decision space, which has a profound impact on the computational efficiency of the model and enables us to support the solution of large-scale problems. The data-driven model is based on an automated method of identifying the forbidden and recommended paper grade sequences, as well as the changeover durations between two paper grades. The results from a real industrial case study show that the data-driven model leads to good results in terms of both solution quality and CPU time in comparison to the full-space model.Peer reviewe

    Extended Formulations in Mixed-integer Convex Programming

    Full text link
    We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201

    Decomposition techniques with mixed integer programming and heuristics for home healthcare planning

    Get PDF
    We tackle home healthcare planning scenarios in the UK using decomposition methods that incorporate mixed integer programming solvers and heuristics. Home healthcare planning is a difficult problem that integrates aspects from scheduling and routing. Solving real-world size instances of these problems still presents a significant challenge to modern exact optimization solvers. Nevertheless, we propose decomposition techniques to harness the power of such solvers while still offering a practical approach to produce high-quality solutions to real-world problem instances. We first decompose the problem into several smaller sub-problems. Next, mixed integer programming and/or heuristics are used to tackle the sub-problems. Finally, the sub-problem solutions are combined into a single valid solution for the whole problem. The different decomposition methods differ in the way in which subproblems are generated and the way in which conflicting assignments are tackled (i.e. avoided or repaired). We present the results obtained by the proposed decomposition methods and compare them to solutions obtained with other methods. In addition, we conduct a study that reveals how the different steps in the proposed method contribute to those results. The main contribution of this paper is a better understanding of effective ways to combine mixed integer programming within effective decomposition methods to solve real-world instances of home healthcare planning problems in practical computation time
    corecore