
https://helda.helsinki.fi

Reinforcement learning of adaptive online rescheduling timing

and computing time allocation

Ikonen, Teemu J.

2020-10

Ikonen , T J , Heljanko , K & Harjunkoski , I 2020 , ' Reinforcement learning of adaptive

online rescheduling timing and computing time allocation ' , Computers & Chemical

Engineering , vol. 141 , 106994 . https://doi.org/10.1016/j.compchemeng.2020.106994

http://hdl.handle.net/10138/346176

https://doi.org/10.1016/j.compchemeng.2020.106994

cc_by_nc_nd

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Reinforcement learning of adaptive online rescheduling timing and
computing time allocation

Teemu J. Ikonena, Keijo Heljankob,c, Iiro Harjunkoskia,d,∗

aAalto University, Department of Chemical and Metallurgical Engineering, PO Box 16100, 00076 Aalto, Finland
bUniversity of Helsinki, Department of Computer Science, PO Box 68, 00014 University of Helsinki, Finland

cHelsinki Institute for Information Technology (HIIT), Helsinki, Finland
dABB Power Grids Research, Kallstadter Str. 1, 68309 Mannheim, Germany

Abstract

Mathematical optimization methods have been developed to a vast variety of complex problems in the field
of process systems engineering (e.g., the scheduling of chemical batch processes). However, the use of these
methods in online scheduling is hindered by the stochastic nature of the processes and prohibitively long
solution times when optimized over long time horizons. The following questions are raised: When to trigger
a rescheduling, how much computing resources to allocate, what optimization strategy to use, and how
far ahead to schedule? We propose an approach where a reinforcement learning agent is trained to make
the first two decisions (i.e., rescheduling timing and computing time allocation). Using neuroevolution of
augmenting topologies (NEAT) as the reinforcement learning algorithm, the approach yields, on average,
better closed-loop solutions than conventional rescheduling methods on three out of four studied routing
problems. We also reflect on expanding the agent’s decision-making to all four decisions.

Keywords: online scheduling, rescheduling procedures, reinforcement learning, decision-making, timing,
computing resource allocation

1. Introduction

The operation of a large-scale production plant or a supply chain involves an enormous number of real-
time decisions. This decision-making, made in limited time and often with limited information, affects not
only the profitability of the system but also its environmental impact via the consumption of electricity,
fuel, and raw materials, and the rate of equipment degradation. The development of technologies for the
optimal operation of such systems belongs to the field of process systems engineering (PSE). During the past
50 years, mathematical optimization techniques have been developed and extensively applied to problems
emerging in PSE (Grossmann & Harjunkoski, 2019). The most significant of these methods are mathemat-
ical programming and heuristic optimization algorithms. Today, these techniques are valuable analytical
decision-making tools for system operators, capable of handling significantly more decision variables than a
human while providing the solution with proven global optimality.

However, there are limitations on the applicability of mathematical optimization techniques. First, the
length of the time horizon, for which the optimal solution can be formed, is limited. The reason is that
the longer the time horizon, the larger is the number of decision variables and, consequently, the greater
the required computing capacity. The iterative procedure of solving scheduling problems in subsequent,
and typically partly overlaid, time horizons is referred to as the rolling horizon approach (Harjunkoski
et al., 2014). Second, industrial processes are inherently stochastic. As processes are subject to changes and
disturbances, the longer is the time allocated to an optimization procedure, the weaker is the correspondence
of the optimized solution to the reality. These limitations raise two main questions: 1) When should

∗Corresponding author. E-mail address: iiro.harjunkoski@de.abb.com (I. Harjunkoski)

Preprint submitted to Journal of LATEX Templates July 26, 2020



rescheduling procedures be started and 2) what is the optimal length of the time horizon in each operating
situation?

While in the industry such decisions are often made by (human) operators, the methods reported in the
literature for the timing of rescheduling procedures can be categorized into periodic (e.g., Gupta et al. (2016),
Dong et al. (2018)) and event-triggered (e.g., Touretzky et al. (2017), Katragjini et al. (2013)) rescheduling,
as well as their hybrids (e.g., Pattison et al. (2017)). In periodic methods, optimization procedures are
repeatedly performed at a predefined frequency. In event-triggered methods, a new optimization procedure
is started when new information is obtained. In this context, the integration, or at least interfacing, of
scheduling and process control is important, in order to communicate the information of process level
disturbances to the scheduling level (Baldea & Harjunkoski, 2014). Subramanian et al. (2012) proposed a
state-space model for production scheduling, which enhances the representation of the current process state
at the scheduling level.

Gupta & Maravelias (2016) report that, based on their results, minimum values exist for both the
rescheduling frequency and the scheduling horizon length, below which the quality of the generated schedules
is significantly compromised. Nevertheless, in the literature, the influence of the scheduling horizon length
on the goodness of the solutions is inadequately studied and, to our knowledge, no adaptive methods have
been reported for this purpose. It is also worth mentioning that certain fields of optimization methods, such
as stochastic programming (Birge & Louveaux, 2011) and robust optimization (Ben-Tal et al., 2009), enable
the anticipation of uncertainties in optimization parameters. However, the required computing capacity of
these methods is considerably higher than that of deterministic methods (discussed above). For this reason,
when using deterministic methods, rescheduling procedures can be performed more frequently, and with
longer time horizons, than with stochastic optimization methods that anticipate uncertainty (Subramanian
et al., 2012; Harjunkoski et al., 2014).

In an earlier conference contribution (Ikonen & Harjunkoski, 2019), we proposed a framework, where a
reinforcement learning (RL) agent (Sutton & Barto, 2018) makes the following decisions on rescheduling
procedures:

1. The timing of rescheduling procedures;

2. The allocated computing time;

3. The optimization strategy (mathematical programming or a heuristic algorithm); and

4. The length of the scheduling horizon.

The RL agent is trained in a simulated operating environment. Decisions 1, 3 and 4 are among the critical
design aspects for online scheduling methods outlined by Gupta et al. (2016). Regarding Decision 3, heuristic
algorithms are rule-based methods that can complement mathematical programming. Out of the two,
mathematical programming can, in general, find a better solution and prove the global optimality of the
solution. On the other hand, heuristic algorithms are often computationally lighter than mathematical
programming. For these reasons, arguably, keeping both methods in the ‘repertoire’ of the agent enhances
its ability to react to changes in the operating environment.

RL is one of the three main categories of machine learning, along with supervised and unsupervised
learning. RL has a significant potential to automate and enhance decision-making traditionally made by
humans. In RL, an active goal-seeking agent interacts with a passive environment. Following its action(s),
the agent receives feedback from the environment, including the updated state of the environment and the
reward of the action(s) (Fig. 1).

A recent example of the effectiveness of RL is the AlphaZero algorithm by DeepMind that can achieve,
via self-play, higher ELO rating1 than Stockfish 8 in chess and a superhuman level in two other board
games shogi and Go (Silver et al., 2018). The reason for the recent development in RL is in the deep
neural networks, which allow high-dimensional state and action spaces. Deep RL algorithms, such as deep
Q-networks (DQN) (Mnih et al., 2015) and trust region policy optimization (TRPO) (Schulman et al., 2015),
have been successfully applied to large-scale decision-making problems that were intractable in the past.

1The ELO rating, often used in chess, describes the skill level of a player relative to other players.

2



Figure 1: A reinforcement learning agent interacting with the environment at time t.

Another approach to RL is to train the agents by neuroevolution algorithms, such as neuroevolution of
augmenting topologies (NEAT) (Stanley & Miikkulainen, 2002) and hypercube-based NEAT (HyperNEAT)
(Stanley et al., 2009). The fundamental difference between deep RL and neuroevolution is that the former is
based on the gradient-based backpropagation method (which is used to update the node weights) and a single
agent, whereas the latter is based on evolutionary optimization and a population of agents. A key feature
of neuroevolution is that the evolution process can be initiated from a very simple neural network topology,
the complexity of which then incrementally increases during the evolution. The feature reduces unnecessary
complexity of the final neural network. Despite a general belief that gradient-based optimization methods
are more efficient than those based on evolutionary algorithms, Such et al. (2017) showed that neuroevolution
is a competitive alternative for the deep RL methods. For extensive reviews of deep RL and neuroevolution,
the reader may wish to consult papers by Arulkumaran et al. (2017) and Stanley et al. (2019), respectively.

Both deep RL and neuroevolution methods have been successfully used to train agents to play Atari
2600 video games (Mnih et al., 2013; Hausknecht et al., 2014), in which the controls are to move a joystick
with two degrees of freedom and to press a button. In decision-making related to rescheduling procedures,
the ability of the agent to influence the environment is at a somewhat similar level of complexity as in the
game mentioned above. What is critical is the timing of these actions.

Regarding scheduling, RL has been used to train an agent to explicitly decide scheduling actions in a real
or simulated environment (Šemrov et al., 2016; Atallah et al., 2018), to repair outdated schedules (Palom-
barini & Martinez, 2012), as well as to learn dispatching rules suitable for a specific scheduling environment
(Priore et al., 2014; Aydin & Öztemel, 2000). Recently, Shin et al. (2019) reviewed the implications of rein-
forcement learning to process control, and highlighted the development of a hierarchical modular structure,
in which RL operates at the higher level and mathematical optimization at the lower level, as one of the
future research directions. Shin & Lee (2019) then proposed a modeling framework for efficient integration
of multi-timescale decisions, which combines mathematical programming and RL.

While the earlier applications of RL to scheduling optimization have mainly aimed at learning explic-
it scheduling decisions or suitable dispatching rules for a certain operating environment, the framework
proposed in Ikonen & Harjunkoski (2019) operates at a higher level. It utilizes the strengths of mathemat-
ical programming and heuristic algorithms at finding the optimal, or a nearly optimal, solution (a result
of significant research effort during the past 50 years), and focuses on the decision-making related to the
optimization procedures in a changing operating environment.

In this paper, we propose an approach where a RL agent is trained to make the first two decisions of
the framework (i.e., the rescheduling timing and computing time allocation). As the RL algorithm, we
use NEAT2 because of its desirable feature of yielding simple neural network topologies, facilitating the
interpretation of the final solution. A description of the algorithm is given in Section 4.1.

The structure of this paper is the following. In Section 2, we further elaborate the original framework
involving four decisions on the rescheduling procedures. In Section 3, we present a set of simple dynamic
routing problems, suitable to serve as test cases for the approach. In Section 4, we train RL agents to decide

2Regarding NEAT, our contributions do not involve any improvements or modifications to the algorithm. We use the
implementation of the algorithm by McIntyre et al. (2019).

3



the rescheduling timing and the allocated computing time on these routing problems. Thus, the decisions on
the optimization strategy and the scheduling horizon length are not involved in the test cases, but are topics
of the future work.

2. Elaborating the framework proposed in Ikonen & Harjunkoski (2019)

In the proposed framework, the RL agent makes the four rescheduling decisions (see the introduction),
which only affect the execution of the rescheduling procedures, and not the process itself. Therefore, the
process and the optimizer, which is the module that performs the rescheduling procedures, together form
the environment for the RL agent (Fig. 2). The optimizer may use either mathematical programming
or a heuristic algorithm, and has access to predetermined computing resources. The scheduling decisions,
determined by the optimizer, control the operation of the process. Vice versa, new information of the process
is updated to the optimizer so that rescheduling procedures are performed with the latest information of
the process parameters3.

Figure 2: The proposed approach, in which the optimizer and the process together form the environment for a RL agent.

Figure 3 shows generic action and state spaces of the agent. Each signal in these spaces may receive a
value in the range of [0, 1] The agent decides the actions at a frequency fa, significantly lower than a typical
rescheduling frequency. The four rescheduling decisions, stated above, are encoded into five action signals.
The first three define whether a rescheduling procedure is executed, and if positive, whether the optimizer
is commanded to use mathematical programming or a heuristic algorithm (Decisions 1 and 3). The action
to be executed is that of the three signals receiving the highest value. The fourth and fifth signal determine
the allocated computing time (Decision 2) and horizon length (Decision 4), respectively. For these decisions,
the signal value is mapped into a predefined range of allowable values.

We divide the state space signals into three categories. Category 1 signals describe the deviations in the
optimization parameters that have occurred in the process after the initiation of the previous rescheduling
procedure. Examples of these are deviations in processing times or material yields. A signal value of less
than 0.5 indicates a decrease and a value of more than 0.5 an increase in the parameter value. Category 2
signals describe discrete changes in the process environment after the initiation of the previous rescheduling
procedures. Examples of these are new orders and equipment breakdowns4. Such changes may be significant
for the operation of the process. Considering the examples, the n most urgent orders can be associated with
state signals, such that the signal value indicates the due date of the order with respect to the current
scheduling horizon. If equipment breakdowns are considered, each equipment can be associated with a

3Thus, the interaction between the optimizer and the process follows a standard procedure used, for example, in periodic
and event-triggered rescheduling.

4An equipment breakdown means an unexpected occurrence of a technical problem, which stops the operation of the
equipment.

4



Figure 3: State and actions spaces of the RL agent, making the rescheduling decision. Regarding the first three action signals
(Decisions 1 & 3), the one receiving the highest value is executed.

signal, which receives the value of 1 if the state of the unit (functioning or failed) is the same as at the
initiation of the previous rescheduling, and the value of 0 if opposite. Category 3 signals describe the
state of the optimizer. Examples of quantities in this category are the computing resources remaining, the
remaining time allocated for the ongoing rescheduling procedure, and the current optimality gap (the last
one applies only to mathematical programming).

The framework expands the scope of conventional rescheduling methods, i.e. periodic and event-triggered
rescheduling, and their hybrids. Instead of only deciding the timing of rescheduling, it also decides the
allocated computing time, the solution algorithm, and the horizon length.

3. Dynamic routing problem

In this section, we describe the dynamic routing problem, suitable to serve as a simple case study for the
proposed approach with two decisions. As we have stated in Section 2, in our approach the RL environment
consists of both the process and the optimizer. Therefore, we define here an optimization problem where
information is also obtained during the timespan of the problem (i.e., the process), as well as an optimization
method and an available computing budget (i.e. the optimizer).

As the optimization problem, let us consider a square region, having dimensions 1000 × 1000 m, and a
vehicle traveling in the region at a constant speed of v = 10 m/s. The purpose of the vehicle is to visit
ninit +nnew sites in the region before site-specific due dates tdue ∈ {0, 1 . . . tspan}, where tspan is the timespan
of the problem. Each site has an order date tord, at which the vehicle receives the location and due date of
the site. The order dates of ninit sites are known at the beginning of the timespan (tord = 0), and those of
nnew sites are received between the start of the timespan and the due date (tord ∈ {0, 1 . . . tdue}). At t = 0,
the vehicle is at site 0. The objective of the optimization problem is to minimize the delay sum of visiting
the ninit +nnew sites. Since scheduling decisions must be made with limited information, finding the optimal
solution to the problem requires rescheduling.

As the optimization method, we use ant colony optimization (ACO) (Dorigo & Gambardella, 1997),
which is a probabilistic metaheuristic search method of finding good paths in a graph. In the method, ants
communicate by laying pheromone on paths between nodes. The laid pheromone concentration of an ant is
proportional to the objective function value of the route the ant traveled. When a new ant is at node i, it
chooses the path to node j with the probability

pij =
φαijd

β
ij∑n

i,j=1 φ
α
ijd

β
ij

, (1)

5



where φij and dij are the pheromone level and desirability5 of the path (i, j), respectively, and α and β
are influence parameters6. We use a population size of 200. We have implement ACO using the Python
module ACOpy (Grant, 2018). In all experiments of this paper, the computing budget for the rescheduling
procedures during the timespan is restricted to 50 CPU seconds. Each rescheduling procedure is associated
with information time tinfo and execution time texe, the difference of which is the allocated computing time
tcomp. The rescheduling is conducted using the information available at tinfo, whereas texe is the planned
start time of the new schedule.

Ideally, the vehicle should receive an updated route before reaching the end of the previously scheduled
route. However, this may not always happen. As an example, in periodic rescheduling, such incidents would
occur if the horizon length is defined to be shorter than the rescheduling interval. Therefore, we define that,
if the vehicle arrives at the end of the scheduled route, it starts to follow the route of a greedy algorithm, in
which it proceeds to the closest site that has not yet been visited, until it receives a new optimized route. If
all ordered sites are visited, the vehicle is on standby at the last scheduled site until the end of the timespan
tspan. We generate the initial route at t = 0 also by the greedy algorithm.

In the following two sections, we present an introductory example (Section 3.1) of this dynamic routing
problem, as well as larger test cases (Section 3.2), to which we will later apply the RL-based approach.

3.1. Introductory example with 9 sites

The introductory example involves nord = 7 sites, the orders (i.e., the location and the due date) of
which are known at t = 0, and nnew = 2 sites, the orders of which are obtained during the timespan (Table
1). The timespan of the problem is t = 500 s. Figures 4(a)-4(e) show the locations of the sites.

Table 1: Order and due dates, tord and tdue, of the sites in the introductory example.
site tord [s] tdue [s]
0 - -
1 0 46
2 0 198
3 0 343
4 0 14
5 0 279
6 0 400
7 0 346
8 4 43
9 185 439

Here, we use periodic rescheduling with an interval of 50 s and a horizon length of 500 s (i.e. the entire
timespan of the problem). The computing budget of 50 s is distributed evenly between the rescheduling
procedures. Therefore, each procedure is allocated a computing time of tcomp = 5 s. Figure 4(a) shows
the initial route (determined by a greedy search) for the vehicle. Further, Figures 4(b)-4(d) visualize
representative open-loop routes during the process7. In these figures, the locations of the vehicle at tinfo and
texe are indicated by the grey and black circles, respectively.

At texe = 5 s, the first optimized route is obtained, in which the visit to urgent site 1 is scheduled before
visits to sites 6 and 2 (which is the opposite to the initial route). At texe = 55 s and texe = 205 s, the
optimizer includes visits to sites 8 and 9, respectively, to the open-loop route. The locations and due dates
of these sites were not known at t = 0. When examining the open-loop routes, we can see that obtaining
the order of site 8 causes a complete rescheduling of the route (cf. Figs. 4(b) and 4(c)), whereas, when the
order of site 9 is obtained, it is simply appended to the open-loop route (cf. Figs. 4(c) and 4(d)). In fact,

5In this work, we use the distance of a path as its desirability measure.
6In this work, we use values α = 1 and β = 3.
7Rescheduling procedures were also triggered at times tinfo = {100, 150, 250, 300, 350} s, but these procedures did not change

the open-loop route. At tinfo = {400, 450} the vehicle was on standby at site 9. As no new orders are obtained, the rescheduling
procedures at these times were omitted.

6



the rescheduling was not necessary in the case of the latter. The same closed-loop solution would have been
obtained even if no rescheduling procedures were triggered after tinfo = 50. This highlights the importance
of carefully assessing the obtained new information. Figure 4(e) shows the final closed-loop route of the
vehicle. The delay sum of the final route is 235.30 s, which is caused by the vehicle failing to meet the due
dates at sites 1, 4 and 8 (see Fig. 4(f)).

(a) initial route (b) tinfo = 0 s, texe = 5 s

0 250 500 750 1000
Easting [m]

0

200

400

600

800

1000

No
rt

hi
ng

[m
]

0

1

2
3

4

5

6
7

8

0

100

200

300

400

500

du
e

da
te

[s]

(c) tinfo = 50 s, texe = 55 s

(d) tinfo = 200 s, texe = 205 s (e) final closed-loop route (f) Visiting times and the tardiness/earliness
of the vehicle at the sites

Figure 4: Representative open-loop routes and the final closed-loop route for the introductory example with nine sites. The
locations and due dates of sites 8 and 9 are received at t = 4 s and 185 s, respectively, whereas the other orders are already
known at t = 0. The continuous path represents the realized route of the vehicle, and dashed path the scheduled open-loop
route. The grey and black circles indicate the location of the vehicle at tinfo and texe, respectively, for the open-loop routes.

3.2. Test cases with 40-60 sites

In this section, we define four test cases that are similar to, but larger than, the introductory example
in the previous section. We define Test cases 1-3 to involve 50 sites but, in order to vary the amount
of new information obtained during the timespan, to have varying numbers of initially known and new
orders (Table 2). The number of new orders varies from 0 (i.e., no new orders) to 20. However, in reality,
the frequency at which new orders are received fluctuates between time frames. In order to mimic this
fluctuation, we define the number of new orders, nnew, to be randomly drawn from the uniform distribution
of {0, 1 . . . 20} in Test case 4.

Further, we define the parameters for the test cases randomly. The x- and y-coordinates of each site
are randomly drawn from a uniform distribution of [0, 1000] m, and the due dates tdue from a discrete
uniform distribution of {0, 1 . . . tspan}, where the timespan tspan = 1000 s. Accordingly, the order dates tord

of the nnew sites are randomly drawn from a discrete uniform distribution of {0, 1 . . . tdue}. We use this
randomization method to create different instances of the test cases. It is worth noticing that, because of

7



Table 2: The numbers of initially known and new orders, ninit and nnew, respectively, in the four test cases.
Test case ninit [-] nnew [-]

1 50 0
2 40 10
3 30 20
4 40 randomly drawn

from {0, 1 . . . 20}

the definition, the probability distribution of the order dates tord in {0, 1 . . . tspan} is not uniform, but biased
towards the beginning of the time span (Fig. 5). We can express the probability of the kth time point in
{0, 1 . . . tspan} to be chosen as the order date as

pk =
1

nt

nt∑
i=k

1

i
, (2)

where nt = |{0, 1 . . . tspan}|.

0 100 200 300 400 500 600 700 800 900 1000
tord [s]

0.000

0.002

0.004

0.006

p
ro

b
ab

il
it

y
[-

]

Figure 5: Probability distribution of the order date tord ∈ {0, 1 . . . tspan}.

In Section 4, we will use these problems as test cases for the RL-based rescheduling approach. In the
remainder of this section, we tune the parameters of periodic and event-triggered rescheduling, as well as
their hybrid, to each of the four test cases using a grid search, as the optimal values of these parameters are
problem-dependent. The parameters to be tuned of periodic rescheduling are the rescheduling interval and
horizon length. In event-triggered rescheduling, we tune the horizon length and the allocated computing
time per rescheduling procedure, and, in hybrid rescheduling, the rescheduling interval and the allocated
computing time per rescheduling procedure. The resulting rescheduling methods with tuned parameters will
be benchmark methods for our RL-based approach.

The parameter tuning of these rescheduling methods is equivalent to the training of the agent in the
RL-based approach. In order to facilitate a fair comparison between the methods, we train the models on
the same randomly generated instances of each test case. More precisely, we use the first five instances
(seeds {0, 1 . . . 4}) in the training, and the next 30 (seeds {5, 6 . . . 34}) in testing the methods. The latter
provides an indication of performance of the methods on unseen instances of the test cases. We evaluated
each parameter combination on the five training instances of each test case. We ran the experiment on a
cluster of 20 Intel(R) Xeon(R) Gold 6148 CPUs, each having 4.4 GB of RAM, such that only one CPU is
assigned to each of the parameter combination evaluations.

In the periodic rescheduling, the tested parameter values for the rescheduling interval are {5, 10, 20, 40, 80,
120, 160, 200, 240, 280, 320} s and for the horizon length {100, 200, . . . , 700} s, yielding a total of 77 parameter
combinations, which we study using a grid search. Figures 6(a)-6(d) show the average delay sums for

8



Test cases 1 to 4, respectively. The following behavior is visible in all results. The combinations lying
near the lower right corner of the plots have poor performance because, in this region, the rescheduling
interval is longer than the horizon length, forcing the vehicle occasionally to switch to the greedy algorithm.
The combinations lying in the other extreme (i.e., near the top left corner of the plot) also have a poor
performance. The reason is that in these combinations rescheduling procedures are performed very frequently
with short computing times and long horizon lengths. The optimizer does not have enough time to find
good open-loop solutions to these relatively large problems. The combinations lying in between these two
regions have good performance.

(a) Test case 1 (nnew = 0) (b) Test case 2 (nnew = 10) (c) Test case 3 (nnew = 20) (d) Test case 4 (nnew is varied)

Figure 6: Tuning of periodic rescheduling. The reported delay sums are the averages of five problem instances. The best
parameter combination is highlighted by a circle. Darkest red points exceed the scale.

The event-triggered rescheduling is only applicable to Test cases 2-4, as no new orders are obtained in
Test case 1. The tested parameter values for the rescheduling horizon length are {100, 200, . . . , 700} s. In
Test cases 2 and 3, we know precisely how many rescheduling procedures will be triggered8, as the number of
new orders, nnew, is fixed. Thus, in these test cases, we distribute the computing budget of 50 s evenly for the
resulting nnew + 1 rescheduling procedures (taking also the rescheduling at time t = 0 into account). In Test
case 4, the number of new orders varies from 0 to 20. Therefore, as we cannot allocate the computing time
per procedure optimally a priori, we adopt a similar grid search strategy as with the periodic rescheduling.
The tested values for the computing time per procedure are {1, 2, . . . , 10}.

(a) Test case 2 (nnew = 10) (b) Test case 3 (nnew = 20) (c) Test case 4 (nnew is varied)

Figure 7: Tuning of event-triggered rescheduling. In Test cases 2 and 3, the computing budget is distributed evenly between
the rescheduling procedures based on the number of new orders, nnew, which is known a priori. In Test case 4, the computing
time per procedure is a tuning parameter. Event-triggered rescheduling is not applicable to Test case 1.

The hybrid rescheduling also is not applicable to Test case 1. The parameters we test in Test cases 2 to 4
are the rescheduling intervals of {5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320} s and the allocated computing

8With the caveat that new rescheduling procedures cannot be triggered if the previous rescheduling is ongoing (the same
applies later to the RL agent).

9



times of {1, 2, . . . , 10} s. In the hybrid rescheduling, we do not know a priori how many rescheduling
procedures will be required. The horizon length is also a key parameter but, in order to keep the size of the
grid search manageable, we choose here to use the horizon length of 400 s, which is a representative value
in periodic and event-triggered rescheduling.

(a) Test case 2 (nnew = 10) (b) Test case 3 (nnew = 20) (c) Test case 4 (nnew is varied)

Figure 8: Tuning of hybrid rescheduling. The best parameter combination is highlighted by a circle. Darkest red points exceed
the scale. Hybrid rescheduling is not applicable to Test case 1.

The best-performing parameter combinations for the conventional rescheduling methods, as well as the
corresponding average delay sums, are listed in Table 3. In these combinations, the horizon length varies
between 300 and 600 s. In Test cases 1-3, the rescheduling interval of periodic rescheduling seems to be
inversely proportional to the number of new orders nnew. This result makes sense from the practical point
of view – the more frequently new information is obtained, the sooner the optimized schedule becomes
outdated. In Test cases 1-3, the average delay sum seems to be proportional to the number of new orders
nnew, showing the difficulty of finding good solutions with limited information. When applicable (i.e., in
Test case 2 to 4), the hybrid rescheduling yields the shortest average delay sums. The results reported in
Table 3 are the benchmarks for our RL-based approach in Section 4.

Table 3: The best performing parameters for the periodic, event-triggered, and hybrid rescheduling, as well as the corresponding
delay sums, in Test cases 1-4.

computing time
Test case [-] method interval [s] horizon length [s] per procedure [s] average delay sum [s]

1i periodic 80 400 3.84ii 1120.7

2 periodic 40 500 2.00ii 1504.9
event-triggered - 500 4.54ii 1574.7

hybrid 40 400iii 2.00 1419.0

3 periodic 10 400 0.50ii 1793.0
event-triggered - 500 2.38ii 1801.8

hybrid 120 400iii 2.00 1699.7

4 periodic 20 300 1.00ii 1638.6
event-triggered - 600 4.00 1515.5

hybrid 180 400iii 3.00 1463.2

i Event-triggered and hybrid rescheduling are not applicable to Test case 1. ii Not explicitly tuned. The value is determined
by distributing the total computing budget evenly between the rescheduling procedures, the number of which is known a

priori. iii Not explicitly tuned. The value is chosen as a representative value of tuned parameters in periodic and
event-triggered rescheduling.

Finally, Figure 9 presents representative initial, first nine open-loop, and the final closed-loop route of the
periodic rescheduling on the first instance of Test Case 2. Figure 10 shows the corresponding visiting times
and the tardiness/earliness of the vehicle at the sites. Despite being a solution to a larger scale problem,
the same features are also present here as in the introductory example (Section 3.1): sites with urgent due
dates are prioritized and, as the time proceeds, new orders are included in the scheduled route.

10



(a) initial route (b) tinfo = 0 s, texe = 2 s (c) tinfo = 40 s, texe = 42 s

(d) tinfo = 80 s, texe = 82 s (e) tinfo = 120 s, texe = 122 s (f) tinfo = 160 s, texe = 162 s

(g) tinfo = 200 s, texe = 202 s (h) tinfo = 240 s, texe = 242 s (i) tinfo = 280 s, texe = 282 s

(j) tinfo = 320 s, texe = 322 s (k) final realized route

Figure 9: Visualization of the vehicle routing in the first instance of Test case 2 (nnew = 10). In addition to the initial (a) and
the final closed-loop route (k), the first nine open-loop routes are shown (b)-(j).

11



Figure 10: Visiting times and the tardiness/earliness of the vehicle at the sites, corresponding to the final route shown in Fig.
9(k).

4. Reinforcement learning of rescheduling timing and computing time allocation

Let us now solve the dynamic routing problems by the proposed approach, considering the first two of the
four rescheduling decisions, listed in Section 1. As the RL algorithm, we use neuroevolution of augmenting
topologies (NEAT). We describe NEAT in the next section. In Section 4.2, we describe the state and action
spaces, as well as the reward function, of the simplified approach.

4.1. Neuroevolution of augmenting topologies (NEAT)

NEAT is an evolutionary algorithm that simultaneously evolves the topology and weights of a neural
network (Stanley & Miikkulainen, 2002). The freedom to control the topology allows NEAT to scale the
complexity of the neural network to a level appropriate for the problem. For simple problems, the optimized
neural network topology may consist of only a few nodes and connections, whereas, in complex problems,
also the complexity of the neural network is increased. In the applications of the algorithm, the largest
neural networks are composed of connections, the number of which is in an order of hundreds or thousands
(Stanley et al., 2019).

NEAT is based on three main features. First, the genes of the individuals are tracked with historical
markers, in order to enable crossover between individuals with different topologies. Here, a gene contains
the genetic information of a node or connection in a neural network. When structural mutation introduces
a new node or connection into an individual, the gene of the new structure, is assigned a marker, referred
to as the innovation number. In crossover, the genes with the same innovation number are aligned. An
offspring inherits each aligned gene randomly from one of its parents and the non-aligned genes from the
more fit parent.

Second, the population is divided into species based on a measure, referred to as the genetic distance.
Between two individuals, the genetic distance is determined based on the number of non-aligned genes and
the average weight differences in aligned genes. Individuals primarily compete within their own species.
This feature protects new innovations, which perhaps have not yet reached their potential, from being
prematurely eliminated from the population.

Third, NEAT starts the evolution process from a topologically uniform population, having minimal
complexity. During the evolution, mutations introduce topological variations, which incrementally increase
the complexity of the neural networks, and topological diversity of the population. This strategy minimizes
the dimensionality of the search space. Stanley & Miikkulainen (2002) concluded, based on a series of
ablation studies, that the three main features are interdependent and, thus, necessary for the algorithm to

12



reach a fast learning rate. In this work, we use a Python implementation of the algorithm, neat-python
(McIntyre et al., 2019).

4.2. State and action spaces, and the reward function

The two rescheduling decisions we consider in this work are 1) the timing of rescheduling procedures
and 2) the allocated computing time. Figure 11 shows the state and action spaces for the agent, interacting
with the environment.

Figure 11: State and action spaces for the dynamic routing problem.

State space. The state space signals s are the means of the agent to sense the environment. In our test
cases, these signals describe the status of the process (i.e., the dynamic vehicle routing) and the optimizer
(i.e., ACO and the status of the computing resources). We use four simple state space signals.

Signal s1 describes the urgency of the most urgent unscheduled order as

s1 =


1, if ťdue − t > h
ťdue−t
h , if 0 ≤ ťdue − t ≤ h

0, otherwise,

(3)

where ťdue is the due date of the most urgent unscheduled order, t is the current time, and h is the length
of the scheduling horizon. The most urgent unscheduled order can belong to the ninit initially known orders
or the nnew new orders. Signal s2 describes the level of computing resources remaining as

s2 =
crem

cbudget
, (4)

where crem is the used computing time and cbudget is the computing time budget, allocated for the timespan.
While the test cases have a finite timespan, signal s2 could in continuous online scheduling describe the
remaining computing budget of a cloud computing facility, allowing more parallel processors to be used
simultaneously but with a predefined quota for a certain timespan. Signal s3 is the current time, normalized
with respect to the timespan tspan, defined as

s3 =
t

tspan
. (5)

Finally, signal s4 indicates how far in the future is the end of the previously used scheduling horizon. This
signal is defined as

s4 =


1, if t̂scheduled − t > h
t̂scheduled−t

h , if 0 ≤ t̂scheduled − t ≤ h
0, otherwise.

(6)

where t̂scheduled is the visiting time of the last site in the current scheduled route.

13



Based on the categorization of state space signals in Section 2, signal s1 belongs to Category 2, and signals
s2, s3, and s4 to Category 3. If we would model the speed v of the vehicle to fluctuate9, for example due to
traffic conditions, we could include also a Category 1 signal in the state space. This signal would describe
the deviation in the progress of the vehicle with respect to the scheduled visiting times. Alternatively, we
could model the due dates of the known orders to change in time. In this case, Category 1 signals could
describe the deviations of the due dates with respect to the parameters used in the previous rescheduling
procedure.

Action space. We encode the two rescheduling decisions into an action space a of two signals. Signal
a1 encodes the decision of timing the rescheduling procedures. At each time point, the signal determines
whether a new rescheduling procedure is triggered, as follows:{

If a1 ≤ 1
2 → no rescheduling

If a1 >
1
2 → rescheduling.

(7)

In Section 2, we encoded 1) the timing of rescheduling procedures and 2) the optimization strategy into
three action space signals (see Fig. 3). As here the optimization strategy always is the heuristic algorithm,
ACO, the timing of rescheduling procedures can be encoded using only one signal. Signal a2 encodes the
allocated computing time c for the rescheduling procedure, as follows:

c = cmin + (cmax − cmin)a2, (8)

where cmin and cmax are the predefined minimum and maximum computing times for a rescheduling proce-
dure. If signal a1 ≤ 1

2 , signal a2 is ignored.
The reward function. The agent seeks to maximize its reward from the environment. In Section 3,

we defined the objective of dynamic routing problem to be to minimize the delay sum of the vehicle at the
sites. In the beginning of Section 4, we defined that we train the agents on five instances of each of the three
test cases. Therefore, we now define the reward function to be the average delay sum in the five instances
multiplied by −1.

4.3. Results

The parameters we use in this case study to define the basic behavior of the agent are listed in Table 4.
We use the same parameters for all four test cases. We use a fixed horizon length of h = 400 s, as this is a
representative value in the tuned parameter combinations of the periodic and event-triggered rescheduling.
In Section 3.2, the allocated computing time per procedure with the conventional rescheduling methods
varies between 0.5 and 4.54 s10 in the test cases. Here, we have chosen such minimum and maximum
computing times, cmin and cmax, that this interval is captured. We define the agent to receive the state
signals and act at a frequency of fa = 1 Hz. However, if a rescheduling procedure is ongoing, the agent
cannot terminate it and start a new one.

Regarding the NEAT algorithm, we use a population of 80 individuals, and evolve the population for
80 generations. For other parameters of the algorithm, we have chosen to use the same values as in the
single-pole-balancing example in neat-python (McIntyre et al., 2019). We have listed these parameters in
Appendix A.

The training and testing were performed on the same computing facility, which we used in Section 3.2.
As already mentioned in Section 3.2, we use five training and 30 test instances of each test case. The
computational cost to train an agent is dominated by the total computing time budget cbudget and the
number of evaluated training instances of the test case, ntraining. With the parameters we have chosen
here, the training involves evaluation of 6400 candidate agents, and each evaluation requires, at most,

9For the sake of simplicity, we have defined the speed of the vehicle to be constant.
10The lower bound corresponds to the periodic rescheduling in Test case 3, in which the tuned rescheduling interval was 10

s. This means 100 rescheduling procedures during the time span of 1000 s, each of which is allocated a computing time of 0.5
s. The upper bound is from the event-triggered rescheduling in Test case 2.

14



Table 4: The parameter defining the basic behavior of the agent and its training.
Parameter Symbol Value

minimum computing time per procedure cmin 0.5 s
maximum computing time per procedure cmax 5 s

horizon length h 400 s
action frequency fa 1 Hz

number of training instances ntraining 5
population size (NEAT) npop 80

number of generations (NEAT) ngen 80

ntraining × cbudget = 250 s of computing time on the ACO algorithm. Although, in reality, the average
evaluation time is a bit lower, as all candidate agents do not use the whole computing time budget. Thus,
on our computing facility, consisting of 20 CPUs, the required time to train an agent to an environment is
around 20 hours.

Table 5 shows the average delay sums in Test cases 1-4 when the rescheduling decisions are determined
by the optimized agent, obtained by the NEAT algorithm, and the conventional rescheduling methods with
the tuned parameters listed in Table 3. We report the average delay sums separately for the training and test
instances. For the conventional rescheduling methods, the training results are the same as in Table 3, and
the test results we have generated accordingly using the tuned parameters. We report the relative differences
with respect to that conventional rescheduling method yielding the best results on the test instances. The
event-triggered and hybrid rescheduling are not applicable to Test case 1, so we report the relative differences
with respect to the periodic rescheduling. When looking at the training instances, the agents, obtained by
the NEAT algorithm, make rescheduling decisions that lead to closed-loop routes with smaller average delay
sums than those obtained by the conventional rescheduling methods on all four test cases.

Table 5: Comparisons of close-loop results for Test cases 1 to 4 when using the NEAT agents and the conventional rescheduling
methods to trigger the rescheduling procedures. The comparisons are made separately on ntraining = 5 training and ntest = 30
test instances.

Relative
Average delay sum [s] difference [%]

Rescheduling training test training test
Test case method instances instances instances instances

1i periodic 1120.7 1275.4 0.00 0.00
NEAT agent 1061.3 1235.1 -5.30 -3.16

2 periodic 1504.9 1604.8 -4.43 3.82
event-triggered 1574.7 1545.8 0.00 0.00

hybrid 1419.0 1550.8 -9.89 0.32
NEAT agent 1365.9 1530.1 -13.26 -1.02

3 periodic 1793.0 2128.6 -0.49 7.10
event-triggered 1801.8 1987.5 0.00 0.00

hybrid 1699.7 2032.1 -5.67 2.24
NEAT agent 1635.2 1980.1 -9.25 -0.37

4 periodic 1638.6 1743.5 11.99 8.26
event-triggered 1515.5 1723.1 3.57 6.99

hybrid 1463.2 1610.5 0.00 0.00
NEAT agent 1423.0 1674.4 -2.75 3.97

i Event-triggered and hybrid rescheduling are not applicable to Test case 1.

When looking at the corresponding results on the unseen test instances, the NEAT agents yield, on
average, better results than the conventional rescheduling methods on three out of four test cases (i.e., Test
cases 1 to 3). The margins to the best-performing conventional rescheduling method are 0.37 to 3.16%.
On Test case 4, the hybrid rescheduling yielded, on average, the best results by a margin of 3.97% to those
obtained by the NEAT algorithm, which yielded the second best results. It is worth noticing that substantial
effort has been made in tuning the conventional rescheduling methods to the test cases (see Section 3.2).

Let us next examine the neural network topologies of the agents we obtained by the NEAT algorithm.

15



Figure 12 presents the topologies of the agents that are trained to the four different test cases. Signal s1

describes the urgency of the most urgent unscheduled order. It is particularly meaningful when a new order
arrives, as the new order may well become the most urgent order. In Test case 1, no new orders arrive
during the timespan. In the corresponding neural network (Fig. 12(a)), signal s1 is not connected to either
of the action signals. The reason is that, in this case, signals s1 and s4 (i.e., the remaining time in the
previously used scheduling horizon) describe nearly the same information of the environment. As signal s4

has connections to a1, signal s1 is redundant. In Test cases 2 to 4, new orders are obtained during the
timespan. In the corresponding neural networks (Figs. 12(b) to 12(d)), signal s1 is connected to action
signal a1 by a negative connection weight. Therefore, the smaller is the value of signal s1 (meaning greater
urgency), the more it stimulates the agent to trigger a rescheduling procedure. In fact, the information of
s1 is very relevant for the agents operating in environments where new orders arrive, which we will show
later when discussing Fig. 13.

(a) Test case 1 (b) Test case 2 (c) Test case 3 (d) Test case 4

Figure 12: Neural network topologies of the optimized agents to Test cases 1-4. State signal s1 is the urgency of the most
urgent unscheduled order, s2 is the computing resources remaining, s3 is the normalized time in the timespan, and s4 is the
time to the end of the scheduling horizon. Action signals a1 and a2 determine whether the rescheduling procedure is initiated
and the allocated computing time, respectively. The red and green arrows indicate connections with negative and positive
weights, respectively. The figures are created by a visualization function in neat-python, which uses Graphviz (Ellson et al.,
2003).

Signal s2 describes the computing resources remaining. In Figs. 12(a) and 12(c)), it has a positive
connection to signal a1. The more computing resources remain, the more it stimulates the agent to triggering
a rescheduling procedure. However, in Figs. 12(b) and 12(c), signal s2 has also a negative connection to
signal a2, which means that the smaller are the computing resources remaining, the more computing time is
allocate to rescheduling procedures. We would expect the agent to become more frugal when the remaining
computing resources are reduced (like in Fig. 12(d)). Therefore, this negative connection seems counter-
intuitive (we will return to this later in this section).

Signal s3 is the normalized time with respect to the timespan. In Test cases 2 to 4, the signal seems to
have low importance, as it is not connected to the action signals in Figs. 12(b) to 12(d). In these test cases,
new orders are obtained during the timespan. In contrast, in the neural network of Test case 1 (with no
new orders), signal s3 seems to have a high importance, as it has connections to both a1 and a2.

Figure 13 shows the timing and duration of the rescheduling procedures, as well as the order dates tord

of the nnew new orders and their corresponding due dates tdue. The figures correspond to the first training
instance of Test cases 1-4. The rescheduling intervals of the periodic rescheduling were 80, 40, 10, and 20
s in these test cases, respectively. Some periodic rescheduling procedures were omitted at the end of the
timespan. The reason is that at these time points the open-loop optimization problems include less than
two sites, the order of which can be varied. Therefore, as the solution is trivial, the procedures are omitted.

The behavior of the trained agents, obtained by the NEAT algorithm, is closer to that of the event-
triggered rescheduling than that of the periodic rescheduling. In contrast to the periodic rescheduling, the

16



(a) Test case 1 (no new orders)

periodic
event-trig.

hybrid
NEAT

0 100 200 300 400 500 600 700 800 900 1000
time t [s]

tord

tdue

(b) Test case 2

periodic
event-trig.

hybrid
NEAT

0 100 200 300 400 500 600 700 800 900 1000
time t [s]

tord

tdue

(c) Test case 3

periodic
event-trig.

hybrid
NEAT

0 100 200 300 400 500 600 700 800 900 1000
time t [s]

tord

tdue

(d) Test case 4

Figure 13: The timings and allocated computational times.

agents, obtained by the NEAT algorithm, bias the rescheduling procedures towards the beginning of the
timespan. This behavior is the clearest by the agent trained to Test case 1 (Fig. 13(a)). At the very beginning

17



of the timespan, this agent triggers a series of five rescheduling procedures at times t = {0, 4, 8, 12, 16} s,
each of which having an allocated computing time of 3.27 s. Therefore, between t = 0 . . . 16 s, the agent
triggers always when possible. The agent has learned that, as no new orders occur in this test case, the
beginning of the timespan is critical. Investing a significant fraction (32.7%) of computing time budget
already during the first 16 s of the timespan is a part of a behavior that yields a good reward. After t = 30
s, the agent triggers rescheduling procedures at an interval of around 57 s. It triggers the last rescheduling
procedure at t = 601 s, when the remainder of the timespan fits into a single scheduling horizon of h = 400
s.

The agents trained to Test cases 2 to 4 (Figs. 13(b) and 13(c)) also have biased the rescheduling
procedures towards the beginning of the timespan, but the bias is not as strong as by the agent trained to
Test case 1. These rescheduling procedures follow the arrivals of new orders11 – particularly those with high
urgency. The level of urgency is indicated by the slope of the line connecting the order date tord to its due
date tdue. This makes sense from a practical point of view: If a new urgent order arrives, an immediate
rescheduling seems like a reasonable action. In Fig. 13(b), five orders with the steepest slope occur at times
t = {41, 264, 526, 554, 724} s. At these time points, the agent triggers immediate rescheduling procedures.
The order with the sixth steepest slope occurs at time t = 508 s. The agent does not immediately react to
this, or to the other orders with gentler slopes. The agents of Test cases 3 and 4 have a similar behavior.
This ability to track the arrivals of new orders is due to signal s1, as signals s2 and s3 are senseless to the
order and due dates of the sites, and signal s4 is senseless to sites that are not yet scheduled.

Earlier we noticed that, counter-intuitively, signal s2 has a negative connection to signal a2 in the agents
trained to Test cases 2 and 3 (see Figs. 12(b) and 12(c)). This negative connection causes the allocated
computing time per procedure, c (Eq. 8), to gradually increase during the timespan from 1.66 to 3.72 s
in (the shown instance of) Test case 2, and from 1.77 to 2.38 s in Test case 3. Looking at Figs. 12(b)
and 12(c), this behavior seems now more justifiable. The randomization method we used to generate the
instances biases the order dates towards the first half of the timespan (see Fig. 5). The agent has learned
that in the beginning of the timespan new orders are frequent, and it should react to these by frequent
rescheduling procedures. As the resulting schedules will anyway be changed soon, it is not worth to invest
long computing times to these procedures. In the end of the timespan, new orders are less likely (in Test
cases 2 and 3, last orders arrive at t = 724 and t = 667 s, respectively). Therefore, it is worth investing
longer computing times in the corresponding rescheduling procedures. Despite the counter-intuitiveness of
the negative connection between signals s2 and a2, this was the way the agent was able to adapt to the
biased order dates. In contrary, in Test case 4, the number of new orders is uncertain, to which the agent
reacts by reducing the allocated computing time per procedure from 5.0 to 3.56 s during the timespan, in
order to reduce the risk of prematurely running out of the computing time.

Finally, let us return to the visualized instance of the routing procedure by the periodic rescheduling,
shown in Fig. 9, and compare it with the corresponding routing by the agent trained to Test case 2 (Fig.
14). The timings of rescheduling procedures, as well as the order and due dates, tord and tdue, of these
two routings were shown in Fig. 13(b). The initial routes (Fig. 9(a) and 14(a)) are the same because they
are generated by the same deterministic greedy search algorithm. The routes resulting from rescheduling
procedures triggered at t = 0 s (Fig. 9(b) and 14(b)) have features similar to each other: The visits to
urgent sites 4 and 17 are prioritized, and then the remaining sites in the scheduling horizon are visited by
routes forming slightly zigzagging counter-clockwise spirals. It is worth noticing that, here, the periodic
rescheduling has the scheduling horizon of h = 500 s and the scheduling procedures decided by the agent the
scheduling horizon of h = 400 s. Therefore, sites 9, 10, 13, 23, and 36, the due dates of which are between
t = 400 . . . 500, are included in the open-loop route in Fig. 9(b), but not to that of Fig. 14(b).

The next pair of open-loop routes in Fig. 9(c) and 14(c) are drastically different. These are the routes
from rescheduling procedures that occurred at tinfo = 40 (the periodic rescheduling) and tinfo = 41 s (the
NEAT agent). The periodic rescheduling triggers a rescheduling procedure at t = 40 because it belongs to
the predefined plan. The agent, on the other hand, does not reason a rescheduling procedure necessary at

11The probability distribution of the order dates is biased towards the beginning of the timespan, see Fig. 5)

18



(a) initial route (b) tinfo = 0.0 s, texe = 1.7 s (c) tinfo = 41.0 s, texe = 42.8 s

(d) tinfo = 121.0 s, texe = 122.9 s (e) tinfo = 197.0 s, texe = 199.1 s (f) tinfo = 264.0 s, texe = 266.2 s

(g) tinfo = 341.0 s, texe = 343.4 s (h) tinfo = 455.0 s, texe = 457.7 s (i) tinfo = 526.0 s, texe = 528.9 s

(j) tinfo = 554.0 s, texe = 557.2 s (k) final realized route

Figure 14: Visualization of the vehicle routing in the first instance of Test case 2 (nnew = 10). The instance is the same is in
Fig. 9, which was generated by the periodic rescheduling.

19



t = 40, and also has not reasoned before. At t = 41 s, a new urgent order to site 48 arrives (cf. the slope
of the first new order in Fig. 13(b)). This new order causes a rapid decrease in state signal s1, which then
stimulates the agent to trigger a rescheduling procedure at the same time point. Site 48 receives a high
priority in the new open-loop route – and changes the general layout of the route into a zigzagging clockwise
spiral. In the periodic rescheduling, the order at site 48 is included in a rescheduling procedure the first
time at tinfo = 80 s. However, at this point, the vehicle has already moved further away from site 48, and
the visit there is included in the route at a later stage. As a result, the tardiness of the vehicle at site 48 is
263.4 s (Fig. 10), which is the greatest single contribution to a total delay sum of 1128.8 s. On the other
hand, in the routing where the decisions are made by the agent, the tardiness at site 48 is only 13.6 s (Fig.
15), and the total delay sum is 1041.1 s. The opposite traveling directions of the vehicle are still clearly
visible in the open-loop routes in Figs. 9(j) (counter-clockwise) and 14(j) (clockwise).

Figure 15: Visiting times and the tardiness/earliness of the vehicle at the sites, corresponding to the final route shown in Fig.
14(k).

5. Discussion

In this work, we have proposed an approach where a RL agent makes decisions on the timing and
allocated computing time of rescheduling procedures. In Section 4, we trained agents to four test cases of a
dynamic routing problem, in which the optimizer is based on ACO. The obtained results are, on average,
better than those by the periodic and event-triggered rescheduling. Presumably, if the agent is given the
freedom to also decide the horizon length and the optimization strategy12 (see Section 2), we would obtain
a further improvement in the closed-loop solutions (with the same computing budget). The argument for
this is that, when a new decision is assigned to the agent, the resulting action space is a generalization of
the previous action space.

We trained the agents to four test cases, each having different rates of arriving new orders, using the
same settings. The resulting agents are still very different from each other both in terms of their neural
network topology (Fig. 12) and behavior (Fig. 13). Each of these agents was able to adapt to their test
case. The agents were also able to find favorable behavior that, to humans, may seem counter-intuitive (cf.
the negative connection between signals s2 and a2). Although the test cases are simple, and yet artificial,
similar adaption without prejudice could be seen in more complex industrial applications. A natural choice

12Assuming that the alternative strategy is more efficient or effective in some open-loop optimization problems than the used
ACO algorithm.

20



for the next application would be a real online vehicle routing problem, of which the studied test case
is a simplification, or a sequencing problem of a single-stage process with sequence-dependent changeover
times. Future work should also evaluate the suitability of the approach to online planning and/or scheduling
problems.

A challenge with the proposed approach is the computational cost of training the agent to an environment.
The training of each agent, the results of which we reported in Section 4.3, required a computing time of
around 20 hours on the scientific computing cluster, consisting of 20 CPUs. If we would have considered
a larger computing budget13 for the timespan, even higher computational cost would have been incurred.
Thus, the applicability of the approach to problems with a larger computing budget is currently limited.
The future work involves investigation of ways to mitigate the computational cost of training the agents.
Possible ways include, first, the use of alternative reward functions, the value of which the agent receives
more frequently. With the current reward function, an agent receives feedback of its actions only once,
after interacting with the environment for the timespan of tspan. An alternative reward function could be,
for example, the improvement in the objective function of the open-loop problem divided by the invested
computing time. The agent would receive the value of this reward function after each rescheduling procedure.
Second, despite neuroevolution is indicated, in the literature, to be a competitive alternative for deep RL
(Such et al., 2017), the suitability of deep RL methods to the proposed approach should be investigated.

In this work, we used the NEAT algorithm to evolve the topology and node weights of the neural networks.
We acknowledge that most likely some more recent neuroevolution (see the review paper by Stanley et al.
(2019)) or deep RL methods are more suitable for the proposed approach. However, the NEAT algorithm
yields, in general, neural network topologies with low complexity. This feature facilitates the interpretation
of relationships between the state and action signals in the optimized neural network topology, which we
did in Section 4.3. Arguably, the interpretation would not have been this convenient if the training was
conducted by a deep RL method.

In Sections 1 and 2, we listed mathematical programming and a heuristic algorithm as the two alternative
optimization strategies. The ‘repertoire’ of the agent can be tailored to a process, and may alternatively
include two different mathematical programming models or two different heuristic algorithms. A key element
in choosing the strategies is that they represent different trade-offs between effectiveness and efficiency. By
effectiveness, we mean the ability of an optimization method to find highly competitive solutions and, by
efficiency, the ability to find good solutions quickly. Alternatively, this pair of strategies could include one
deterministic approach (e.g., a deterministic mixed-integer programming model) and another considering
parameter uncertainty (e.g. a stochastic programming model). In this case the trade-off is between efficiency
and the level of uncertainty anticipation. Further, the ‘repertoire’ could also comprise more than two
optimization strategies, in the case of which each additional strategy expands the action space by one new
signal (see Fig. 3).

6. Conclusions

We propose an online rescheduling approach, in which the decision-making of rescheduling timing and
computing time allocation are made by a reinforcement learning (RL) agent. We demonstrate the approach
on four dynamic routing problems, using the RL algorithm NEAT. When comparing the results on 30
randomized test instances of each problem, the proposed approach yields closed-loop solutions with smaller
average delay sums than the periodic, event-triggered, and hybrid rescheduling (the key parameters of which
have been tuned) in three out of four test cases by margins of 0.37 to 3.16%. In one test case, the hybrid
rescheduling yields, on average, better results than the proposed approach by a margin of 3.97%. The future
work will investigate the expansion of the RL agent’s decisions to also include the optimization strategy and
the length of the scheduling horizon.

13Here, were used a computing budget of cbudget = 50 s.

21



Acknowledgements

Financial support from the Academy of Finland, through project SINGPRO (decision numbers 313466
and 327533), is gratefully acknowledged. In addition, the authors would like to thank CSC – the Finnish
IT Center for Science – for providing the computing resource for the project.

Appendix A. Parameters of the NEAT algorithm

This appendix lists the parameters we used in the neuroevolution of augmenting topologies (NEAT) al-
gorithm in Section 4.3. The parameters, shown in the format of the neat-python configuration file (McIntyre
et al., 2019), are:

[NEAT]
fitness criterion = max
fitness threshold = 0
pop size = 80
reset on extinction = False

[DefaultGenome]
num inputs = 4
num hidden = 1
num outputs = 2
initial connection = partial direct 0.5
feed forward = True
compatibility disjoint coefficient = 1.0
compatibility weight coefficient = 0.6
conn add prob = 0.2
conn delete prob = 0.2
node add prob = 0.2
node delete prob = 0.2
activation default = sigmoid
activation options = sigmoid
activation mutate rate = 0.0
aggregation default = sum
aggregation options = sum
aggregation mutate rate = 0.0
bias init mean = 0.0
bias init stdev = 1.0
bias replace rate = 0.1
bias mutate rate = 0.7
bias mutate power = 0.5
bias max value = 30.0
bias min value = -30.0
response init mean = 1.0
response init stdev = 0.0
response replace rate = 0.0
response mutate rate = 0.0
response mutate power = 0.0
response max value = 30.0
response min value = -30.0
weight max value = 30

22



weight min value = -30
weight init mean = 0.0
weight init stdev = 1.0
weight mutate rate = 0.8
weight replace rate = 0.1
weight mutate power = 0.5
enabled default = True
enabled mutate rate = 0.01

[DefaultSpeciesSet]
compatibility threshold = 3.0

[DefaultStagnation]
species fitness func = max

max stagnation = 20

[DefaultReproduction]
elitism = 2
survival threshold = 0.2

These parameters are, in general, the same as in a single-pole-balancing example in neat-python. How-
ever, we have 1) changed the population size (see ‘pop size’) to 80 (instead of 250 in the example), 2) the
number of action signals (see ‘num outputs’) to 2, since we have two signals in the action space, and 3) the
fitness threshold of termination to 0, which corresponds to the delay sum of 0 s. For further information
on these parameters, the reader is referred to the original paper by Stanley & Miikkulainen (2002) and the
user manual of neat-python (McIntyre et al., 2019).

References

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey.
IEEE Signal Processing Magazine, 34 , 26–38. doi:https://doi.org/10.1109/MSP.2017.2743240.

Atallah, R. F., Assi, C. M., & Khabbaz, M. J. (2018). Scheduling the operation of a connected vehicular network using deep
reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 20 , 1669–1682. doi:https://doi.org/
10.1109/TITS.2018.2832219.

Aydin, M. E., & Öztemel, E. (2000). Dynamic job-shop scheduling using reinforcement learning agents. Robotics and Au-
tonomous Systems, 33 , 169–178. doi:https://doi.org/10.1016/S0921-8890(00)00087-7.

Baldea, M., & Harjunkoski, I. (2014). Integrated production scheduling and process control: A systematic review. Computers
& Chemical Engineering, 71 , 377–390. doi:https://doi.org/10.1016/j.compchemeng.2014.09.002.

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization volume 28. Princeton University Press.
Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business Media.
Dong, Y., Maravelias, C. T., & Jerome, N. F. (2018). Reoptimization framework and policy analysis for maritime inventory

routing under uncertainty. Optimization and Engineering, 19 , 937–976. doi:https://doi.org/10.1007/s11081-018-9383-8.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman

problem. IEEE Transactions on evolutionary computation, 1 , 53–66. doi:https://doi.org/10.1109/4235.585892.
Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2003). Graphviz and dynagraph static and

dynamic graph drawing tools. In Graph drawing software (pp. 127–148). Springer-Verlag. doi:https://doi.org/10.1007/
978-3-642-18638-7_6.

Grant, R. (2018). ACOpy [accessed on the 15th of october, 2018]. https://github.com/rhgrant10/acopy.
Grossmann, I. E., & Harjunkoski, I. (2019). Process systems engineering: Academic and industrial perspectives. Computers &

Chemical Engineering, 126 , 474–484. doi:https://doi.org/10.1016/j.compchemeng.2019.04.028.
Gupta, D., & Maravelias, C. T. (2016). On deterministic online scheduling: Major considerations, paradoxes and remedies.

Computers & Chemical Engineering, 94 , 312–330. doi:https://doi.org/10.1016/j.compchemeng.2016.08.006.
Gupta, D., Maravelias, C. T., & Wassick, J. M. (2016). From rescheduling to online scheduling. Chemical Engineering Research

and Design, 116 , 83–97. doi:https://doi.org/10.1016/j.cherd.2016.10.035.
Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann, I. E., Hooker, J., Méndez, C., Sand, G.,

23

http://dx.doi.org/https://doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/https://doi.org/10.1109/TITS.2018.2832219
http://dx.doi.org/https://doi.org/10.1109/TITS.2018.2832219
http://dx.doi.org/https://doi.org/10.1016/S0921-8890(00)00087-7
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2014.09.002
http://dx.doi.org/https://doi.org/10.1007/s11081-018-9383-8
http://dx.doi.org/https://doi.org/10.1109/4235.585892
http://dx.doi.org/https://doi.org/10.1007/978-3-642-18638-7_6
http://dx.doi.org/https://doi.org/10.1007/978-3-642-18638-7_6
https://github.com/rhgrant10/acopy
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2019.04.028
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2016.08.006
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2016.10.035


& Wassick, J. (2014). Scope for industrial applications of production scheduling models and solution methods. Computers
& Chemical Engineering, 62 , 161–193. doi:https://doi.org/10.1016/j.compchemeng.2013.12.001.

Hausknecht, M., Lehman, J., Miikkulainen, R., & Stone, P. (2014). A neuroevolution approach to general atari game playing.
IEEE Transactions on Computational Intelligence and AI in Games, 6 , 355–366. doi:https://doi.org/10.1109/TCIAIG.
2013.2294713.

Ikonen, T. J., & Harjunkoski, I. (2019). Decision-making of online rescheduling procedures using neuroevolution of augmenting
topologies. In Computer Aided Chemical Engineering (pp. 1177–1182). Elsevier volume 46. doi:https://doi.org/10.1016/
B978-0-12-818634-3.50197-1.

Katragjini, K., Vallada, E., & Ruiz, R. (2013). Flow shop rescheduling under different types of disruption. International
Journal of Production Research, 51 , 780–797. doi:https://doi.org/10.1080/00207543.2012.666856.

McIntyre, A., Kallada, M., Miguel, C. G., & da Silva, C. F. (2019). neat-python [accessed on the 17th of june, 2019].
https://github.com/CodeReclaimers/neat-python.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 , .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G. et al. (2015). Human-level control through deep reinforcement learning. Nature, 518 , 529. doi:https:
//doi.org/10.1038/nature14236.

Palombarini, J., & Martinez, E. (2012). Smartgantt–an interactive system for generating and updating rescheduling knowl-
edge using relational abstractions. Computers & Chemical Engineering, 47 , 202–216. doi:https://doi.org/10.1016/j.
compchemeng.2012.06.021.

Pattison, R. C., Touretzky, C. R., Harjunkoski, I., & Baldea, M. (2017). Moving horizon closed-loop production scheduling
using dynamic process models. AIChE Journal , 63 , 639–651. doi:https://doi.org/10.1002/aic.15408.

Priore, P., Gómez, A., Pino, R., & Rosillo, R. (2014). Dynamic scheduling of manufacturing systems using machine learning:
An updated review. AI EDAM , 28 , 83–97. doi:https://doi.org/10.1017/S0890060413000516.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In International
conference on machine learning (pp. 1889–1897).

Šemrov, D., Marsetič, R., Žura, M., Todorovski, L., & Srdic, A. (2016). Reinforcement learning approach for train rescheduling
on a single-track railway. Transportation Research Part B: Methodological , 86 , 250–267. doi:https://doi.org/10.1016/j.
trb.2016.01.004.

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement learning–overview of recent progress and implications
for process control. Computers & Chemical Engineering, 127 , 282–294. doi:https://doi.org/10.1016/j.compchemeng.
2019.05.029.

Shin, J., & Lee, J. H. (2019). Multi-timescale, multi-period decision-making model development by combining reinforcement
learning and mathematical programming. Computers & Chemical Engineering, 121 , 556–573. doi:https://doi.org/10.
1016/j.compchemeng.2018.11.020.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T.
et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362 ,
1140–1144. doi:https://doi.org/10.1126/science.aar6404.

Stanley, K. O., Clune, J., Lehman, J., & Miikkulainen, R. (2019). Designing neural networks through neuroevolution. Nature
Machine Intelligence, 1 , 24–35. doi:https://doi.org/10.1038/s42256-018-0006-z.

Stanley, K. O., D’Ambrosio, D. B., & Gauci, J. (2009). A hypercube-based encoding for evolving large-scale neural networks.
Artificial life, 15 , 185–212. doi:https://doi.org/10.1162/artl.2009.15.2.15202.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary computation,
10 , 99–127. doi:https://doi.org/10.1162/106365602320169811.

Subramanian, K., Maravelias, C. T., & Rawlings, J. B. (2012). A state-space model for chemical production scheduling.
Computers & chemical engineering, 47 , 97–110. doi:https://doi.org/10.1016/j.compchemeng.2012.06.025.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017). Deep neuroevolution: Genetic algorithms
are a competitive alternative for training deep neural networks for reinforcement learning. arXiv:1712.06567.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Touretzky, C. R., Harjunkoski, I., & Baldea, M. (2017). Dynamic models and fault diagnosis-based triggers for closed-loop

scheduling. AIChE Journal , 63 , 1959–1973. doi:https://doi.org/10.1002/aic.15564.

24

http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2013.12.001
http://dx.doi.org/https://doi.org/10.1109/TCIAIG.2013.2294713
http://dx.doi.org/https://doi.org/10.1109/TCIAIG.2013.2294713
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-818634-3.50197-1
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-818634-3.50197-1
http://dx.doi.org/https://doi.org/10.1080/00207543.2012.666856
https://github.com/CodeReclaimers/neat-python
http://dx.doi.org/https://doi.org/10.1038/nature14236
http://dx.doi.org/https://doi.org/10.1038/nature14236
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2012.06.021
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2012.06.021
http://dx.doi.org/https://doi.org/10.1002/aic.15408
http://dx.doi.org/https://doi.org/10.1017/S0890060413000516
http://dx.doi.org/https://doi.org/10.1016/j.trb.2016.01.004
http://dx.doi.org/https://doi.org/10.1016/j.trb.2016.01.004
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2019.05.029
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2019.05.029
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2018.11.020
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2018.11.020
http://dx.doi.org/https://doi.org/10.1126/science.aar6404
http://dx.doi.org/https://doi.org/10.1038/s42256-018-0006-z
http://dx.doi.org/https://doi.org/10.1162/artl.2009.15.2.15202
http://dx.doi.org/https://doi.org/10.1162/106365602320169811
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2012.06.025
http://arxiv.org/abs/1712.06567
http://dx.doi.org/https://doi.org/10.1002/aic.15564

