69 research outputs found

    Randomized Dose-Ranging Controlled Trial of AQ-13, a Candidate Antimalarial, and Chloroquine in Healthy Volunteers

    Get PDF
    OBJECTIVES: To determine: (1) the pharmacokinetics and safety of an investigational aminoquinoline active against multidrug–resistant malaria parasites (AQ-13), including its effects on the QT interval, and (2) whether it has pharmacokinetic and safety profiles similar to chloroquine (CQ) in humans. DESIGN: Phase I double-blind, randomized controlled trials to compare AQ-13 and CQ in healthy volunteers. Randomizations were performed at each step after completion of the previous dose. SETTING: Tulane–Louisiana State University–Charity Hospital General Clinical Research Center in New Orleans. PARTICIPANTS: 126 healthy adults 21–45 years of age. INTERVENTIONS: 10, 100, 300, 600, and 1,500 mg oral doses of CQ base in comparison with equivalent doses of AQ-13. OUTCOME MEASURES: Clinical and laboratory adverse events (AEs), pharmacokinetic parameters, and QT prolongation. RESULTS: No hematologic, hepatic, renal, or other organ toxicity was observed with AQ-13 or CQ at any dose tested. Headache, lightheadedness/dizziness, and gastrointestinal (GI) tract–related symptoms were the most common AEs. Although symptoms were more frequent with AQ-13, the numbers of volunteers who experienced symptoms with AQ-13 and CQ were similar (for AQ-13 and CQ, respectively: headache, 17/63 and 10/63, p = 0.2; lightheadedness/dizziness, 11/63 and 8/63, p = 0.6; GI symptoms, 14/63 and 13/63; p = 0.9). Both AQ-13 and CQ exhibited linear pharmacokinetics. However, AQ-13 was cleared more rapidly than CQ (respectively, median oral clearance 14.0–14.7 l/h versus 9.5–11.3 l/h; p ≤ 0.03). QTc prolongation was greater with CQ than AQ-13 (CQ: mean increase of 28 ms; 95% confidence interval [CI], 18 to 38 ms, versus AQ-13: mean increase of 10 ms; 95% CI, 2 to 17 ms; p = 0.01). There were no arrhythmias or other cardiac AEs with either AQ-13 or CQ. CONCLUSIONS: These studies revealed minimal differences in toxicity between AQ-13 and CQ, and similar linear pharmacokinetics

    DNA-Sequence Variation Among Schistosoma mekongi Populations and Related Taxa; Phylogeography and the Current Distribution of Asian Schistosomiasis

    Get PDF
    Schistosomiasis is a disease caused by parasitic worms of the genus Schistosoma. In the lower Mekong river, schistosomiasis in humans is called Mekong schistosomiasis and is caused by Schistosoma mekongi. In the past, Mekong schistosomiasis was known only from the lower Mekong river. Here DNA-sequence variation is used to study the relationships and history of populations of S. mekongi. Populations from other rivers are compared and shown to be S. mekongi, thus confirming that this species is not restricted to only a small section of one river. The dates of divergence among populations are also estimated. Prior to this study it was assumed that S. mekongi originated in Yunnan, China, migrated southwards across Laos and into Cambodia, later becoming extinct in Laos (due to conditions unsuitable for transmission). In contrast, the dates estimated here indicate that S. mekongi entered Cambodia from Vietnam, 2.5–1 Ma. The pattern of genetic variation fits better with a more recent, and ongoing, northwards migration from Cambodia into Laos. The implications are that Mekong schistosomiasis is more widespread than once thought and that the human population at risk is up to 10 times greater than originally estimated. There is also an increased possibility of the spread of Mekong schistosomiasis across Laos

    Unlocking the Transcriptomes of Two Carcinogenic Parasites, Clonorchis sinensis and Opisthorchis viverrini

    Get PDF
    The two parasitic trematodes, Clonorchis sinensis and Opisthorchis viverrini, have a major impact on the health of tens of millions of humans throughout Asia. The greatest impact is through the malignant cancer ( = cholangiocarcinoma) that these parasites induce in chronically infected people. Therefore, both C. sinensis and O. viverrini have been classified by the World Health Organization (WHO) as Group 1 carcinogens. Despite their impact, little is known about these parasites and their interplay with the host at the molecular level. Recent advances in genomics and bioinformatics provide unique opportunities to gain improved insights into the biology of parasites as well as their relationships with their hosts at the molecular level. The present study elucidates the transcriptomes of C. sinensis and O. viverrini using a platform based on next-generation (high throughput) sequencing and advanced in silico analyses. From 500,000 sequences, >50,000 sequences were assembled for each species and categorized as biologically relevant based on homology searches, gene ontology and/or pathway mapping. The results of the present study could assist in defining molecules that are essential for the development, reproduction and survival of liver flukes and/or that are linked to the development of cholangiocarcinoma. This study also lays a foundation for future genomic and proteomic research of C. sinensis and O. viverrini and the cancers that they are known to induce, as well as novel intervention strategies

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    Morphologie de

    No full text
    La connaissance du stade IV de W. bancrofti donne une indication sur la façon dont évolue la morphologie dans le genre et montre, en particulier, que W. kalimantani est une espèce plus évoluée que W. bancrofti et constitue très vraisemblablement une « capture » par le Presbytis de l’espèce parasite de l’homme. La morphologie des adultes de W. bancrofti ne permet pas d’identifier l’origine géographique des divers lots étudiés. Les caractères morphologiques des microfilaires et les particularités biologiques de celles-ci sont plus significatives, mais ne présentent pas de corrélations entre elles. Il apparaît donc que, pour le genre Wuchereria, comme pour les autres Filaires vivipares, les phénomènes de spéciation se manifestent d’abord sur la morphologie et la biologie de la microfilaire, stade le plus sensible au phénomène de sélection

    Of Men and Mosquitos: The Story of Malaria

    No full text
    corecore