424 research outputs found

    A study on mechanical and thermal behavior of coir fiber reinforced epoxy composites

    Get PDF
    The main focus of this study is to utilize the properties of natural fibers and make them compatible with polymer resins effectively. Coir fibres have been used as reinforcement in epoxy resin with various weight percentages of 5%, 10% and 15%. Surface treatment method like alkali treatment is done to improve the performance of coir fibre on epoxy resin. Cow dung powder is added as filler to the composite with a purpose of improving the insulation property of the composite. The mechanical properties like tensile strength, flexural strength, impact strength and the micro hardness showed an increment with respect to fibre loading as well as the alkali treatment. The maximum value is found with the composite having 15% treated coir fibre. Flexural strength showed maximum value at 10% treated fibre loading which decreases after 10% fibre loading. When fibre loading was increased, thermal conductivity reduces. By adding cow dung powder to the untreated fibre composite, thermal conductivity is further decreased. From Thermo Gravimetric Analysis (TGA) it is found that the surface treated fibre composites resist the thermal decomposition effectively up to 2600C after that there is a considerable increase in the thermal stability. Differential Scanning Calorimetry (DSC) showed that the specific heat capacity increases with increase in fibre loading. Untreated fibre composites showed better specific heat capacity than the treated ones. Cow dung powder added to the untreated composite showed that maximum specific heat and specific heat capacity increases further to higher values as the quantity of cow dung powder is increased. Glass transition temperature (Tg) showed an increment with surface treatment as well as fibre loading of up to 10% and after that it decrease

    Kekkon5 is an extracellular regulator of BMP signaling

    Get PDF
    AbstractPrecise spatial and temporal control of Drosophila Bone Morphogenetic Protein (BMP) signaling is achieved by a host of extracellular factors that modulate ligand distribution and activity. Here we describe Kekkon5 (Kek5), a transmembrane protein containing leucine-rich repeats (LRRs), as a novel regulator of BMP signaling in Drosophila. We find that loss or gain of kek5 disrupts crossvein development and alters the early profile of phosphorylated Mad and dSRF in presumptive crossvein cells. kek5 phenotypic effects closely mimic those observed with Short gastrulation (Sog), but do not completely recapitulate the effects of dominant negative BMP receptors. We further demonstrate that Kek5 is able to antagonize the BMP ligand Glass bottom boat (Gbb) and that the Kek5 LRRs are required for BMP inhibitory activity, while the Ig domain is dispensable in this context. Our identification of Kek5 as a modulator of BMP signaling supports the emerging notion that LIG proteins function as diverse regulators of cellular communication

    AN OVERVIEW OF BIOSIMILARS

    Get PDF
    Biosimilars are surmounting pharmaceutical market from last three decades and sale increasing progressively. Advances in the biotechnologylead to development and discovery of new biological products to treat various life-threatening diseases. Biosimilars are biological drugs that areproduced after expiry of the patent of approved innovator. This review attempt to highlight the differences between biosimilars and chemical generics,development stages, issues of concern with the use of biosimilars and need of appropriate regulations for their approval. Generic approach is notscientifically useful to manufacture biosimilars. Biosimilars have more structural complexity, multi-layered manufacturing or scale-up process andrisk of immunogenicity; therefore required unique regulatory pathways to introduce them in the market. Safety and efficacy of biosimilar are essentialparameter to increase access in the population. Biosimilars can ensure the cost-effective treatment to invade incurable diseases due to enhancedcompetition in pharma/biotech industries to manufacture it.Keywords: Biosimilars, Biologics, Follow-on biologics, Generic drugs, Subsequent-entry biologics

    A Subclass of Analytic Functions Associated with Hypergeometric Functions

    Get PDF
    In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc mathcalUmathcal{U}. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions

    Draft genome sequence of Neurospora crassa strain FGSC 73

    Get PDF
    Citation: Baker, S. E., Schackwitz, W., Lipzen, A., Martin, J., Haridas, S., LaButti, K., . . . McCluskey, K. (2016). Draft genome sequence of Neurospora crassa strain FGSC 73. Genome Announcements, 3(2). doi:10.1128/genomeA.00074-15Citation: Baker, S., Schackwitz, W., Lipzen, A., . . . McCluskey, K. (2015). Draft Genome Sequence of Neurospora crassa Strain FGSC 73. Genome Announcements, 3(2), e00074-15. https://doi.org/10.1128/genomeA.00074-15We report the elucidation of the complete genome of the Neurospora crassa (Shear and Dodge) strain FGSC 73, a mat-a, trp-3 mutant strain. The genome sequence around the idiotypic mating type locus represents the only publicly available sequence for a mat-a strain. 40.42 Megabases are assembled into 358 scaffolds carrying 11,978 gene models. © 2015 Baker et al

    101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.

    Get PDF
    Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species
    corecore