209 research outputs found

    The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs.

    Get PDF
    Background/Aims We sought to optimise the design of stepped wedge trials with an equal allocation of clusters to sequences and explored sample size comparisons with alternative trial designs. Methods We developed a new expression for the design effect for a stepped wedge trial, assuming that observations are equally correlated within clusters and an equal number of observations in each period between sequences switching to the intervention. We minimised the design effect with respect to (1) the fraction of observations before the first and after the final sequence switches (the periods with all clusters in the control or intervention condition, respectively) and (2) the number of sequences. We compared the design effect of this optimised stepped wedge trial to the design effects of a parallel cluster-randomised trial, a cluster-randomised trial with baseline observations, and a hybrid trial design (a mixture of cluster-randomised trial and stepped wedge trial) with the same total cluster size for all designs. Results We found that a stepped wedge trial with an equal allocation to sequences is optimised by obtaining all observations after the first sequence switches and before the final sequence switches to the intervention; this means that the first sequence remains in the control condition and the last sequence remains in the intervention condition for the duration of the trial. With this design, the optimal number of sequences is [Formula: see text], where [Formula: see text] is the cluster-mean correlation, [Formula: see text] is the intracluster correlation coefficient, and m is the total cluster size. The optimal number of sequences is small when the intracluster correlation coefficient and cluster size are small and large when the intracluster correlation coefficient or cluster size is large. A cluster-randomised trial remains more efficient than the optimised stepped wedge trial when the intracluster correlation coefficient or cluster size is small. A cluster-randomised trial with baseline observations always requires a larger sample size than the optimised stepped wedge trial. The hybrid design can always give an equally or more efficient design, but will be at most 5% more efficient. We provide a strategy for selecting a design if the optimal number of sequences is unfeasible. For a non-optimal number of sequences, the sample size may be reduced by allowing a proportion of observations before the first or after the final sequence has switched. Conclusion The standard stepped wedge trial is inefficient. To reduce sample sizes when a hybrid design is unfeasible, stepped wedge trial designs should have no observations before the first sequence switches or after the final sequence switches

    Sample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys.

    Get PDF
    BACKGROUND: While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. OBJECTIVE: To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. METHODS: The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. RESULTS: There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. CONCLUSIONS: We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey

    Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches.

    Get PDF
    BACKGROUND: There is limited guidance on the design of stepped wedge cluster randomised trials. Current methodological literature focuses mainly on trials with cross-sectional data collection at discrete times, yet many recent stepped wedge trials do not follow this design. In this article, we present a typology to characterise the full range of stepped wedge designs, and offer guidance on several other design aspects. METHODS: We developed a framework to define and report the key characteristics of a stepped wedge trial, including cluster allocation and individual participation. We also considered the relative strengths and weaknesses of trials according to this framework. We classified recently published stepped wedge trials using this framework and identified illustrative case studies. We identified key design choices and developed guidance for each. RESULTS: We identified three main stepped wedge designs: those with a closed cohort, an open cohort, and a continuous recruitment short exposure design. In the first two designs, many individuals experience both control and intervention conditions. In the final design, individuals are recruited in continuous time as they become eligible and experience either the control or intervention condition, but not both, and then provide an outcome measurement at follow-up. While most stepped wedge trials use simple randomisation, stratification and restricted randomisation are often feasible and may be useful. Some recent studies collect outcome information from individuals exposed a long time before or after the rollout period, but this contributes little to the primary analysis. Incomplete designs should be considered when the intervention cannot be implemented quickly. Carry-over effects can arise in stepped wedge trials with closed and open cohorts. CONCLUSIONS: Stepped wedge trial designs should be reported more clearly. Researchers should consider the use of stratified and/or restricted randomisation. Trials should generally not commit resources to collect outcome data from individuals exposed a long time before or after the rollout period. Though substantial carry-over effects are uncommon in stepped wedge trials, researchers should consider their possibility before conducting a trial with closed or open cohorts

    swpermute: Permutation tests for Stepped-Wedge Cluster-Randomised Trials.

    Get PDF
    Permutation tests are useful in stepped-wedge trials to provide robust statistical tests of intervention-effect estimates. However, the Stata command permute does not produce valid tests in this setting because individual observations are not exchangeable. We introduce the swpermute command that permutes clusters to sequences to maintain exchangeability. The command provides additional functionality to aid users in performing analyses of stepped-wedge trials. In particular, we include the option "withinperiod" that performs the specified analysis separately in each period of the study with the resulting period-specific intervention-effect estimates combined as a weighted average. We also include functionality to test non-zero null hypotheses to aid the construction of confidence intervals. Examples of the application of swpermute are given using data from a trial testing the impact of a new tuberculosis diagnostic test on bacterial confirmation of a tuberculosis diagnosis

    Stepped wedge randomised controlled trials: systematic review of studies published between 2010 and 2014.

    Get PDF
    BACKGROUND: In a stepped wedge, cluster randomised trial, clusters receive the intervention at different time points, and the order in which they received it is randomised. Previous systematic reviews of stepped wedge trials have documented a steady rise in their use between 1987 and 2010, which was attributed to the design's perceived logistical and analytical advantages. However, the interventions included in these systematic reviews were often poorly reported and did not adequately describe the analysis and/or methodology used. Since 2010, a number of additional stepped wedge trials have been published. This article aims to update previous systematic reviews, and consider what interventions were tested and the rationale given for using a stepped wedge design. METHODS: We searched PubMed, PsychINFO, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Web of Science, the Cochrane Library and the Current Controlled Trials Register for articles published between January 2010 and May 2014. We considered stepped wedge randomised controlled trials in all fields of research. We independently extracted data from retrieved articles and reviewed them. Interventions were then coded using the functions specified by the Behaviour Change Wheel, and for behaviour change techniques using a validated taxonomy. RESULTS: Our review identified 37 stepped wedge trials, reported in 10 articles presenting trial results, one conference abstract, 21 protocol or study design articles and five trial registrations. These were mostly conducted in developed countries (n = 30), and within healthcare organisations (n = 28). A total of 33 of the interventions were educationally based, with the most commonly used behaviour change techniques being 'instruction on how to perform a behaviour' (n = 32) and 'persuasive source' (n = 25). Authors gave a wide range of reasons for the use of the stepped wedge trial design, including ethical considerations, logistical, financial and methodological. The adequacy of reporting varied across studies: many did not provide sufficient detail regarding the methodology or calculation of the required sample size. CONCLUSIONS: The popularity of stepped wedge trials has increased since 2010, predominantly in high-income countries. However, there is a need for further guidance on their reporting and analysis

    A Standardized Novel Method to Measure Radiographic Root Changes after Endodontic Therapy in Immature Teeth

    Get PDF
    Outcome studies of endodontic treatment of necrotic immature permanent teeth rely on radiographic measures as surrogates of whether the treatment achieved regeneration/revascularization/revitalization. An increase in radiographic root length and/or width is thought to result in a better long-term prognosis for the tooth. In this study a method to measure radiographic outcomes of endodontic therapies on immature teeth was developed and validated

    Research Culture: Using reflective practice to support PhD students in the biosciences

    Get PDF
    Postgraduate study can be mentally, physically and emotionally challenging. The levels of anxiety and depression in postgraduate students are much higher than those in the general population, and isolation can also be a problem, especially for students who are marginalised due to gender, race, sexuality, disability or being a first-generation and/or international student. These challenges are not new, but awareness of them has increased over the past decade, as have efforts by institutions to make students feel supported. Under the umbrella of a Doctoral Training Partnership, we developed a programme in which reflective practice is employed to help postgraduate students navigate work environments, deal with difficult supervisory or professional relationships, and improve their work-life balance. Additionally, this reflective practice is allowing the training partnership to tailor support to its students, enabling them to effectively nurture our next generation of bioscientists

    Bias and inference from misspecified mixed-effect models in stepped wedge trial analysis.

    Get PDF
    Many stepped wedge trials (SWTs) are analysed by using a mixed-effect model with a random intercept and fixed effects for the intervention and time periods (referred to here as the standard model). However, it is not known whether this model is robust to misspecification. We simulated SWTs with three groups of clusters and two time periods; one group received the intervention during the first period and two groups in the second period. We simulated period and intervention effects that were either common-to-all or varied-between clusters. Data were analysed with the standard model or with additional random effects for period effect or intervention effect. In a second simulation study, we explored the weight given to within-cluster comparisons by simulating a larger intervention effect in the group of the trial that experienced both the control and intervention conditions and applying the three analysis models described previously. Across 500 simulations, we computed bias and confidence interval coverage of the estimated intervention effect. We found up to 50% bias in intervention effect estimates when period or intervention effects varied between clusters and were treated as fixed effects in the analysis. All misspecified models showed undercoverage of 95% confidence intervals, particularly the standard model. A large weight was given to within-cluster comparisons in the standard model. In the SWTs simulated here, mixed-effect models were highly sensitive to departures from the model assumptions, which can be explained by the high dependence on within-cluster comparisons. Trialists should consider including a random effect for time period in their SWT analysis model. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd
    • …
    corecore