
LSHTM Research Online

Thompson, Jennifer; Davey, Calum; Hayes, Richard; Hargreaves, James; Fielding, Katherine; (2019)
Permutation tests for Stepped-Wedge Cluster-Randomised Trials. The Stata Journal. ISSN 1097-8879
https://researchonline.lshtm.ac.uk/id/eprint/4654957 (In Press)

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/4654957/

DOI:

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively
contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

https://researchonline.lshtm.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/237396818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/id/eprint/4654957/
https://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk
https://researchonline.lshtm.ac.uk


The Stata Journal (yyyy) vv, Number ii, pp. 1–17

swpermute: Permutation tests for
Stepped-Wedge Cluster-Randomised Trials

Jennifer Thompson
London School of Hygiene and Tropical Medicine

London, UK
jennifer.thompson@lshtm.ac.uk

Calum Davey
London School of Hygiene and Tropical Medicine

London, UK
calum.davey@lshtm.ac.uk

Richard Hayes
London School of Hygiene and Tropical Medicine

London, UK
richard.hayes@lshtm.ac.uk

James Hargreaves
London School of Hygiene and Tropical Medicine

London, UK
james.hargreaves@lshtm.ac.uk

Katherine Fielding
London School of Hygiene and Tropical Medicine

London, UK
katherine.fielding@lshtm.ac.uk

Abstract. Permutation tests are useful in stepped-wedge trials to provide robust
statistical tests of intervention-effect estimates. However, the Stata command
permute does not produce valid tests in this setting because individual observa-
tions are not exchangeable. We introduce the swpermute command that permutes
clusters to sequences to maintain exchangeability. The command provides addi-
tional functionality to aid users in performing analyses of stepped-wedge trials.
In particular, we include the option “withinperiod” that performs the specified
analysis separately in each period of the study with the resulting period-specific
intervention-effect estimates combined as a weighted average. We also include
functionality to test non-zero null hypotheses to aid the construction of confidence
intervals. Examples of the application of swpermute are given using data from a
trial testing the impact of a new tuberculosis diagnostic test on bacterial confir-
mation of a tuberculosis diagnosis.
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1 Introduction

Permutation tests are a commonly used non-parametric statistical technique, used to
calculate p-values without making distributional assumptions (Pitman (1937), Eden
and Yates (1933), Fisher (1960)). In individually randomised trials, they are used
because they make no distributional assumptions, provide exact p-values and confidence
intervals, and do not rely on large sample approximations (Ernst (2004)); the Stata
command permute provides an intuitive and simple way to perform permutation tests
in this simple scenario.

While the benefits of permutation tests hold for more complex randomised designs,
such as stepped-wedge cluster-randomised trials (SW-CRTs), permute cannot perform a
valid test for these complex designs. In a cluster-randomised trial (CRT), the allocation
of clusters of individuals, such as villages or hospital wards, is randomised. An SW-
CRT is a CRT run over a number of periods. Clusters are randomised to sequences,
where each sequence receives the control condition for a different number of periods,
and then receive an intervention condition for the remaining periods of the trial (Figure
1). Parametric analysis of SW-CRTs requires specification of the correlation structure
over time within cluster. This can be difficult to prespecify and results are sensitive
to misspecification (Thompson et al. (2017)), and so permutation tests, which do not
require specification of correlation structures, are appealing (Hayes and Moulton (2009),
Thompson et al. (2018), Ji et al. (2016), Wang and DeGruttola (2017)).

Figure 1: Schematics of a stepped-wedge cluster-randomised trial. White = time in
control condition, Grey = time in intervention condition

Here we introduce a new command, swpermute. The new command allows specifi-
cation of clustering and allocation to a sequence of intervention conditions to enable use
with CRTs in general, but with a particular focus on SW-CRTs. In the next section,
we provide an overview of permutation tests for SW-CRTs. In section 3, we outline the
syntax of the swpermute command. In section 4, we demonstrate the use of swpermute
with two examples.
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2 Technical details

The swpermute command is designed for trials with two treatment conditions; usu-
ally, this will be a control and intervention condition, so we will use this terminology
throughout this paper. In this section, we will provide a summary of the permutation
test, and how this is implemented in swpermute.

2.1 Permutation Tests with individual randomisation

Details of the permutation test can be found elsewhere, such as Good (2006): here, we
provide a brief summary.

In an individually randomised trial, we have a sample of observations, half of which
were collected under a control condition and half under an intervention condition. We
are interested in knowing whether the control and intervention conditions result in
a different distribution of outcomes. If there is truly no difference between the two
conditions, then assignment of observations to each condition is arbitrary, and for any
set of assignments of the observations to the control and intervention conditions, we can
estimate an intervention effect. By repeating this process for each unique assignment
of observations to conditions, we obtain the exact distribution of the intervention effect
estimator under the null hypothesis of no effect. The p-value, defined as the probability
of the observed data if there is no intervention effect, is then given as the proportion of
permuted intervention effects the same as or more extreme than that observed.

Monte-Carlo permutations

Computational complexity of this process is simplified by randomly sampling a number
of permutations from all possible permutations, with or without replacement, a process
known as Monte-Carlo permutations (Good (2006)). The p-value calculated may differ
when the process is repeated with a different set of permutations.

Constructing Confidence Intervals

Confidence intervals are created by finding the boundaries of hypothesised intervention
effects that lead to two-sided p-values less than the α level. One way to identify the
confidence limits is to test several hypothesised intervention effects to see whether the
p-value is larger or smaller than α.

A hypothesised intervention of θ = θA is tested by first subtracting θA from ob-
servations collected in the intervention condition, then running the permutation test
as described above to get a p-value (Good (2006), Rigdon and Hudgens (2015)). The
random number seed should be set to the same seed as the original analysis so that one
set of permutations are used throughout the analysis, allowing the confidence intervals
and p-value to coincide with one another.
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2.2 Extending permutation tests to stepped-wedge cluster-randomised
trials

Two assumptions are required for permutation tests to be valid.

Firstly, permutation tests test equivalence of distributions between the conditions.
This means they will return a small p-value if either the mean or variance of outcomes
differ. The effect of an intervention varying between observations is an example of the
latter.

Secondly, permutation tests assume exchangeability of observations. This means
that any assignment of observations to the conditions is equally likely. In the context
of SW-CRTs, exchangeability holds for the assignment of clusters to sequences but will
not hold at the individual observation level. Clusters should therefore be permuted
between sequences. The permute command permutes individual observations, so is not
a valid test for SW-CRTs. The swpermute command permutes clusters to sequences so
is valid for SW-CRTs (as well as CRTs with other designs).

2.3 Selecting an intervention effect estimator for a stepped-wedge
trial

Permutation tests provide a p-value and confidence intervals for a given intervention
effect estimator. A key design feature of all SW-CRTs is that the intervention effect is
confounded with time. Therefore, the chosen estimator must account for this confound-
ing either by adjusting for period effects, or by conditioning on periods.

To adjust for period effects, generalised linear models or generalised linear mixed
models can be utilised (Bellan et al. (2015), Ji et al. (2016), Wang and DeGruttola
(2017)).

To condition on period, the analysis can be conducted within each period with
resulting within-period estimates combined as a weighted average. More details of this
method, also known as a vertical analysis, are given in Thompson et al. (2018). Any
analysis that can be used for a parallel CRT could be used within each period, for
example Thompson et al. (2018) suggested using a cluster-level analysis in each period.

The overall intervention effect estimate can be estimated more accurately by us-
ing appropriate weights for each period (Hayes and Moulton (2009)). Periods can be
weighted by the imbalance in the number of clusters in the control and intervention con-
ditions (Matthews and Forbes (2017)), or by the precision of within-period estimates
(Thompson et al. (2018)).

3 The swpermute Command

In this section, we describe the swpermute command.

The swpermute command runs a permutation test for SW-CRTs using any analysis,
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specified by the user, to estimate the intervention effect. The algorithm identifies se-
quences in the data and permutes clusters between these sequences. Like the permute

command, swpermute performs Monte-Carlo permutations with replacement. The spec-
ified analysis can be run either across all periods in the study or within each period with
results combined as a weighted average. Users can specify hypothesised intervention ef-
fects to construct confidence intervals.

3.1 Data requirements

The swpermute command requires specification of a clustering variable identified in
cluster(), a period variable identified in period(), and an intervention variable iden-
tified in intervention(): together these variables define the design of the trial. The
intervention must be specified as a binary variable where 0 and 1 represent the con-
trol and intervention conditions, respectively. All observations within each value of
cluster() must have the same value of intervention() in each period() or the com-
mand will return an error. If the intervention variable contains missing values for all
observations in a period in a cluster, then this is assumed to be part of the sequence,
for example as a washout period, and the missing value will be permuted. Otherwise,
observations with intervention() missing will be excluded from the analysis.

The data should be in long format, with observations in each period given in different
rows of the data.

3.2 Syntax

The syntax of the swpermute command is as follows:

swpermute exp , cluster(varname) period(varname) intervention(varname)[
reps(#) left|right strata(varlist) saving(filename, ...) null(numlist )

outcome(varname) withinperiod weightperiod(weightperiod) nodots

level(#) seed(#)
]
: command

exp specifies the result to be collected from results stored by the execution of com-
mand. Examples are r(mu 1) - r(mu 2) the mean difference estimated by ttest, or
b[varname] a coefficient estimate from a regression model.

cluster(varname) specifies the variable identifying the clusters. cluster() is required
and must be a numeric variable. Observations with cluster() missing will be
excluded from the analysis.

period(varname) specifies the variable identifying the periods. period() is required
and must be a numeric variable. Observations with period() missing will be ex-
cluded from the analysis.

intervention(varname) specifies the variable identifying the intervention assignment.
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intervention() is required and must be a binary variable. Treatment of missing
values is described above.

reps(#) specifies the number of permutations to perform. The default is reps(500).

left|right requests that one-sided p-values be computed. If left is specified, the
p-value reported is the proportion of permutations where exp gives a value less than
or equal to the observed value. If right is specified, the p-value reported is the
proportion of permutations where exp gives a value greater than or equal to the
observed value. The default is two-sided p-values, where the p-value reported is
the proportion of permutations where exp is the same or further from zero than the
observed value.

strata(varlist) specifies that the permutations be performed within each stratum de-
fined by the values of varlist. This option should be used if randomisation of clusters
was stratified (Ernst (2004)).

saving(filename, ...) creates a Stata file (.dta file) consisting of a row for each permu-
tation for each value in null(). The file consists of three variables containing the
null() value being tested, the observed value of exp for that null value, and values
of exp for each permutation. A new filename is required unless replace is specified.
The option double specifies that results should be stored in double precision, the
default is to store results as float. The option every(#) writes results to file every
# permutations. This will allow recovery of partial results should the command not
complete running.

null(numlist) specifies a list of values to test as the null hypothesis. For each value
specified, the value will be subtracted from the variable specified in outcome() if
the variable defined in intervention() is equal to 1. The permutation test is run
on this modified dataset to calculate a p-value. The random number seed is reset
for each value tested. This option should only be used with cluster-period level or
continuous outcomes. The null values are assumed to be on the same scale as the
outcome (e.g. risk differences if the outcomes are cluster-period risks). Ratios such
as risk ratios, or odds ratios should be given on the log scale. The default is null(0).
When values other than the default are specified the option outcome(varname) is
required.

outcome(varname) specifies the variable identifying the outcome. This option is only
required when null(numlist ) is specified with numlist != 0. outcome() is assumed
to be on the same scale as the values specified in null(). For example, outcome()
should contain risks if null() gives risk differences, or log risks if null() gives log
risk ratios.

withinperiod specifies that a within-period analysis should be performed. command is
run within each unique value of the variable specified in period() and the resulting
values of exp are combined as a weighted average using the weights specified in
weightperiod().

weightperiod(weightperiod) specifies the weights to be used if withinperiod is speci-
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fied. This option is only required when withinperiod is specified and is one of the
following:

weightperiod(none): each period is given equal weight, so the weight wj = 1 for
all periods j.

weightperiod(N): periods are weighted by the number of clusters in the control and
intervention conditions as:

wj =

(
1

soj
+

1

s1j

)−1

where s0j and s1j are the numbers of clusters in the control condition and interven-
tion condition respectively in period j. This is the default and is recommended if
the total variance is not expected to vary between periods (Matthews and Forbes
(2017)).

weightperiod(variance exp2): each period is weighted by the inverse of the statis-
tic exp2 stored by the execution of command. That is

wj = exp−1
2j

exp2j is assumed to be the variance of the estimate from the jth period. This spec-
ification is suggested by Thompson et al. (2018) when the variance of the outcome
is expected to vary between periods.

nodots suppresses display of the dots at the completion of each permutation. By default,
one . is displayed for each successful permutation. A red x is displayed if command
returns an error or if the statistic in exp is missing for a permutation.

level(#) specifies the confidence level, as a percentage, for the confidence interval of
the p-value. The default is level(95) or as set by set level; see [U] 20.7 Speci-
fying the width of confidence intervals.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing:

set seed #

prior to calling swpermute. If no seed is specified, swpermute will return different
results each time it is run due to the random selection of permutations.

3.3 Stored results

swpermute stores the following in r():
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Scalars
r(N cluster) number of clusters
r(N strata) number of strata if strata option has been used
r(obs value) value of exp observed in the data
r(N reps) number of permutations

Matrices
r(design) a matrix of 0 and 1 values showing the design of the SW-CRT
r(obs period) value of exp observed in the original data within each period if

a within-period analysis is specified
r(p) p-values with their confidence intervals for each null value

3.4 The Dialog Box

The swpermute command can be used both as a coded command, and through a drop-
down dialog box as shown in the appendix. To install the dialog box run the following
commands:

. window menu append submenu "stUser" "&Cluster RCTs"

. window menu append item "Cluster RCTs" "Permute for stepped-wedge trials
(&swpermute)" "db swpermute"

. window menu refresh

Running these commands from within Stata will only install the dialog box for the
current session of Stata. To install the menus permanently, place the above commands
into your profile.do file. See [U] [GSW] B.3, [U] [GSM] B.1, or [U] [GSWU] B.1
Executing commands every time Stata is started for more details on how to do
this.

4 Example

To demonstrate the use of swpermute we will use data from an SW-CRT conducted in
Brazil that assessed the impact of switching to a new tuberculosis (TB) diagnostic test
called Xpert MTB/RIF from the standard test, sputum smear microscopy. We will focus
on a secondary outcome of the proportion of patients with a bacterial confirmation of
their TB diagnosis (Trajman et al. (2015)). These examples use real trial data, but the
data cannot be provided with the command. Instead, a simulated dataset is included
that closely mimics the characteristics of these trial data, but will not reproduce these
example results.

The trial included 14 laboratories (clusters). At initiation of the study, all laborato-
ries were using sputum smear microscopy to diagnose TB. Following a month of baseline
data collection, the Xpert test was rolled out to two randomly assigned laboratories each
month, so that 7 months later, all laboratories were using the Xpert test. The dataset
contains 3,924 patients; their type of diagnosis was recorded as either clinical (with a
negative test or no test done), or bacterially confirmed. The Xpert test was used to
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diagnose 2,147 (55%) patients. Across both trial arms 2,833 (72%) had a confirmed TB
diagnosis.

The output below describes the dataset.

. describe

Contains data from TBdiagnostic.dta
obs: 3,924

vars: 6 5 Oct 2018 15:33
size: 27,468

storage display value
variable name type format label variable label

lab byte %8.0g ID of laboratory
patientid int %9.0g
study_month byte %8.0g Study month
arm byte %8.0g armlbl Intervention status
fav_outcome byte %10.0g favoutlbl

Treatment outcome of individual
confirmed byte %11.0g confirmedlbl

Laboratory confirmation of TB diagnosis

Sorted by: lab study_month

.

. list in 1/5

lab patien~d study_~h arm fav_outc~e confirmed

1. 1 1 1 smear favourable unconfirmed
2. 1 2 1 smear poor confirmed
3. 1 3 1 smear favourable confirmed
4. 1 4 1 smear poor confirmed
5. 1 5 1 smear favourable confirmed

Each row gives the diagnosis type, confirmed, of a patient. lab identifies which
laboratory they were diagnosed in and so assigns the patient to a cluster. study month

identifies which month of the study they were diagnosed in, and arm identifies whether
the laboratory was using smear microscopy or the Xpert diagnostic at the time of
diagnosis.

We will explore two analyses with permutation tests: the first will use a generalised
linear mixed model with a permutation test, the second will demonstrate a within-period
analysis.

4.1 Example 1: Generalised linear mixed model

A mixed-effect logistic regression, adjusting for period effects as a fixed categorical
variable and with a random intercept for cluster, can be used in combination with a
permutation test to analyse this trial, as shown below.
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. swpermute _b[arm], cluster(lab) period(study_month) intervention(arm) /*
> */ reps(1000) seed(20255) nodots: /*
> */ melogit confirmed i.study_month arm || lab :

Monte Carlo permutation results

command: melogit confirmed i.study_month arm || lab :
statistic: _b[arm]

design:
freq 1 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
2 0 0 0 0 0 1 1 1
2 0 0 0 0 1 1 1 1
2 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1

statistic obs_value null c n p [95% Conf. Interval]

_b[arm] .4155579 0 2 1000 0.0020 .0002423 .0072058

Note: confidence interval is with respect to p
p-value is two-sided

swpermute shows the design-pattern matrix of the trial to allow users to check
that sequences have been correctly identified. Each row represents a unique sequence of
allocations observed within the data, each column represents a period. For each sequence
and period, a 0 or 1 is shown representing the intervention condition of clusters in that
sequence in that period. The left-most column shows the number of clusters assigned
to each sequence.

The table below this gives the results of the permutation test. First, we see the
intervention effect estimate observed in the data (obs value), then the null hypothesis
being tested (null). The third column (c) gives the number of permutations with a
value of exp the same or more extreme than the observed value and the fourth column
(n) gives the total number of permutations successfully completed.

The intervention effect estimate is the value estimated by the melogit command
(odds ratio = exp(0.42) = 1.52).

Only 2/1000 permutations gave a result the same or more extreme than that ob-
served, giving the p-value 2/1000 = 0.002 shown in column 5 (p). This analysis suggests
that there is strong evidence that the Xpert test increases the odds of a confirmed di-
agnosis.

The last two columns give a two-sided 95% confidence interval for the p-value that
indicates the level of uncertainty around the p-value from the random selection of per-
mutations. In this example, the interpretation of the p-value does not substantively
change for values within this interval. Where interpretation would alter for different
values within the interval, the analysis should be rerun with a larger number of permu-
tations.
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4.2 Example 2: Within-period analysis and generating confidence
intervals

In our second example, we will use a within-period analysis to calculate the difference
in the risk (the proportion) of a confirmed diagnosis using a cluster-level analysis within
each period, and we show how to construct confidence intervals.

First, we calculate the proportion of confirmed diagnoses in each cluster-period by
collapsing the data. We run swpermute with regress as the command to calculate a
risk difference and its variance. We select the withinperiod option to run the regression
within each period, and set the period weights as variance weights.

. collapse (mean) risk_confirmed = confirmed , by(lab study_month arm)

.

. swpermute _b[arm], cluster(lab) period(study_month) intervention(arm) /*
> */ seed(9845) withinperiod weightperiod(variance _se[arm]^2) nodots /*
> */ reps(1000): regress risk_confirmed arm

Warning: study_month = 1 not included in analysis. Clusters all in one condition

Warning: study_month = 8 not included in analysis. Clusters all in one condition

Monte Carlo permutation results

command: regress risk_confirmed arm
statistic: _b[arm]

design:
freq 1 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
2 0 0 0 0 0 1 1 1
2 0 0 0 0 1 1 1 1
2 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1

Within period Estimates and Weights:

Estimate Weight
study_month:2 0.0401 0.0581
study_month:3 0.0998 0.1787
study_month:4 0.0334 0.1329
study_month:5 0.1512 0.1835
study_month:6 0.1362 0.2714
study_month:7 0.0909 0.1753

statistic obs_value null c n p [95% Conf. Interval]

_b[arm] .1052611 0 50 1000 0.0500 .0373354 .0653905

Note: confidence interval is with respect to p
p-value is two-sided

We are warned that study month 1 and study month 8 are not included in this
analysis. All clusters are in the same condition during these periods, so an intervention
effect cannot be calculated.
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The command displays a list of effect estimates and weights for each period in the
study. Greatest weight is given to study month 6, despite the imbalance in clusters in
the control and intervention conditions. This is because there was less variability in the
cluster-level outcomes during this period leading to a lower variance for the estimated
intervention effect.

The observed value in the table of results is the weighted average of these period-
specific estimates. The percentage of patients with a confirmed diagnosis was 10.5%
higher in patients diagnosed with the Xpert test compared to patients diagnosed with
smear microscopy, and there is some evidence against the intervention having no effect
(p=0.05).

Next, we demonstrate the construction of 95% confidence intervals. Initial estimate
of the confidence interval boundaries can be found by assuming that the intervention
effect estimate follows a normal distribution and using the p-value to estimate a standard
error as follows:

. * Estimate standard error

. display .1052611 / invnorm( 1 - 0.0500 / 2 )

.05370563

.

. * Initial lower bound of 95% CI:

. display .1052611 - 1.96 * .0537
9.100e-06

. * Initial upper bound of 95% CI:

. display .1052611 + 1.96 * .0537

.2105131

Permutation tests are conducted to test these initial values. An example is shown
below for the initial proposed upper boundary; the dialog boxes shown in the appendix
replicate this example.

. swpermute _b[arm], cluster(lab) period(study_month) intervention(arm) /*
> */ seed(9845) withinperiod weightperiod(variance _se[arm]^2) nodots /*
> */ reps(1000) null(0.211) outcome(risk_confirmed): /*
> */ regress risk_confirmed arm

Warning: study_month = 1 not included in analysis. Clusters all in one condition

Warning: study_month = 8 not included in analysis. Clusters all in one condition

Monte Carlo permutation results

command: regress risk_confirmed arm
statistic: _b[arm]

design:
freq 1 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 1
2 0 0 0 0 0 1 1 1
2 0 0 0 0 1 1 1 1
2 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1

Within period Estimates and Weights:
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Estimate Weight
study_month:2 0.0401 0.0581
study_month:3 0.0998 0.1787
study_month:4 0.0334 0.1329
study_month:5 0.1512 0.1835
study_month:6 0.1362 0.2714
study_month:7 0.0909 0.1753

statistic obs_value null c n p [95% Conf. Interval]

_b[arm] .1052611 .211 26 1000 0.0260 .0170528 .0378651

Note: confidence interval is with respect to p
p-value is two-sided

Depending on the p-value, the proposed boundary value is either increased or de-
creased until the boundary value with p > 0.05 is identified. To identify the lower
boundary in our example, the initial estimate was 0.00, which gives p=0.0500, so we
tested a null value of -0.001 to see if a smaller value also fell with the 95% confidence
interval. This has p=0.048, so the lower boundary is 0.00. For the upper boundary, the
initial estimate of 0.211 gave p=0.026, well outside the 95% confidence interval. A null
of 0.20 gave p=0.045, null=0.197 gave p=0.054, null=0.198 gave p=0.051, and lastly
null=0.199 gave p=0.047: the largest value within the 95% confidence interval is 19.8%.
Therefore our 95% confidence interval is (0.0%, 19.8%).

5 Concluding remarks

swpermute is an extension of the Stata command permute that permutes clusters be-
tween sequences and can perform within-period analyses. We also incorporated func-
tionality to test non-zero null hypotheses to facilitate the construction of confidence
intervals. Although this command has been designed for use with SW-CRTs, it can also
be used with other trial designs such as parallel and crossover CRTs.

The command does, however, have limitations. Testing non-zero null hypothesis
values is only available for continuous outcomes (including cluster–period level sum-
maries). For other outcome types, the process involves manipulating the dataset to
such a degree that we felt it was safer for the user to perform this themselves. For
example, with a binary outcome, a risk difference cannot simply be subtracted from the
outcome of 0 or 1. Whilst we have incorporated stratification of randomisation by a list
of variables, some randomisation strategies, such as restricted randomisation, cannot be
captured in this way (Moulton (2004)). It is a limitation of permutation tests generally
that confidence intervals construction is computationally intensive.

swpermute facilitates the use of robust analysis methods for an SW-CRT, making
complex analysis easier to perform.
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Appendix: Dialog boxes to run the example in section 4.2
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