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Abstract  

Many stepped wedge trials (SWTs) are analysed using a mixed-effect model with a random 

intercept and fixed-effects for intervention and time-periods (referred to here as the 

standard model). However, it is not known whether this model is robust to misspecification.  

We simulated SWTs with three groups of clusters and two time-periods; one group received 

the intervention during the first period, and two groups in the second period. We simulated 

period and intervention effects that were either common-to-all or varied-between clusters. 

Data were analysed with the standard model, or with additional random effects for period 

effect or intervention effect. In a second simulation study, we explored the weight given to 

within-cluster comparisons by simulating a larger intervention effect in the group of the trial 

that experienced both the control and intervention conditions and applying the three 

analysis models described previously.  

Across 500 simulations we computed bias and confidence interval coverage of the 

estimated intervention effect. 

We found up to 50% bias in intervention effect estimates when period or intervention 

effects varied between clusters and were treated as fixed effects in the analysis. All 

misspecified models showed under-coverage of 95% confidence intervals, particularly the 

standard model. A large weight was given to within-cluster comparisons in the standard 

model. 

In the SWTs simulated here, mixed effect models were highly sensitive to departures from 

the model assumptions, which can be explained by the high dependence on within-cluster 

comparisons. Trialists should consider including a random effect for time-period in their 

SWT analysis model. 

Keywords: Stepped Wedge Trials, Cluster Randomised Trials, Mixed effect model, model 

misspecification, simulation study
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Introduction 

Recent reanalysis of a high-profile stepped wedge trial (SWT) has brought into question 

methods commonly used to analyse these complex studies [1-3]. SWTs are often analysed 

using models that make strong assumptions about the clustering in the data [4]. It is 

currently unknown if estimates from these models are robust to deviations from these 

assumptions. 

An SWT is a type of cluster randomised trial where clusters are randomised into groups. 

Each group begins to receive the intervention at a different time so that all clusters start the 

trial in the control condition and by the end of the trial all clusters are receiving the 

intervention.  

The control and intervention conditions can, in principle, be compared in two directions 

known as the vertical and horizontal comparisons [4]. Vertical comparisons compare the 

outcomes of clusters in the intervention condition with the outcomes of clusters in the 

control condition within the same time-period; since the order of rollout is randomised, 

each of these comparisons is randomised. Horizontal comparisons compare outcomes from 

periods in the intervention condition with outcomes from periods in the control condition in 

the same cluster; these are non-randomised before-after comparisons that are confounded 

with time-period. 

In practice, most analysis methods for SWTs incorporate information from both the vertical 

and horizontal comparisons in the intervention effect estimate and so need some way to 

adjust for period effects [4]. The most common analysis model (hereafter referred to as the 

standard model) is a mixed effect model with a random intercept to account for clustering 

and adjusting for period effects as a fixed categorical variable; this model is described by 

Hussey and Hughes [5]. Despite its wide use, guidance for using this analysis model is 

lacking. The model makes strong assumptions about the correlation structure of the data: 

the intervention effect and the period effects are assumed to be common to all clusters. It is 

not currently known whether the intervention effect estimate and its precision are robust to 

misspecifying these assumptions.  

In the context of SWTs, we are most interested in estimation of the intervention effect and 

how robust this effect is to misspecification of the intervention effect itself as well as 

misspecification of the period effect. Previous research has found that misspecifying the 

random effects led to biased effect estimates as well as biased precision of estimates [6]. In 

parallel cluster randomised trials with baseline measurements and in cluster crossover 

randomised trials it has been shown that analyses with hierarchical models should include a 

random effect for period, sometimes referred to as a cluster-period interaction, to avoid 

residual confounding [7-10].  

The importance of specifying the period effect correctly will depend on how much the 

horizontal comparisons contribute within the model. This has not been explored in the 

literature. If a large weight is given to this comparison, any residual confounding of the 

intervention effect by the period effects could lead to a biased estimate of the intervention 

effect. 
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In this paper, we will explore both issues with a simulation study comparing the standard 

model to other mixed effect models, focusing on a binary outcome with cross-sectional 

measurements. We then run a second set of simulations to explore the weight given to 

horizontal comparisons by each analysis model. Following the simulation studies, we 

explore the impact of misspecifying analysis models in our motivating example. 

Motivating example 

There has been much debate in recent literature about the results of a reanalysis of a highly 

cited SWT that investigated the effect on school attendance of a mass deworming 

intervention for school children in Kenya [1-3]. The trial included 75 schools (clusters) that 

were randomised into three groups and ran over two years. School attendance was 

measured as binary outcome with multiple observations for each individual child during 

each year. There was a geometric mean of 1,180 (interquartile range [IQR] 908.5, 1,864) 

observations in each school each year, with the attendance assessed on the same children 

in year two as year one. Children from schools in the first group began receiving the 

intervention at the start of the first year. Children from schools in the second group received 

no intervention during the first year and began receiving the intervention in the second year 

of the study. Children from schools in the third group did not receive the intervention during 

these two years (Figure 1). 

In the reanalysis of this trial,  it was found that the odds ratios for school attendance  for 

year one and year two were both smaller when analysed individually (odds ratio (OR)=1.48 

and 1.23 respectively) than the odds ratio given by the standard model when the data were 

pooled from both years (OR=1.82) [2]. We hypothesised that this could have been because 

the analysis model was misspecified and explored two potential types of misspecification: 

1. The period effects varied between clusters. The standard model assumes that the 

period effects are common to all clusters. This could lead to a biased estimation of 

the intervention effect through biased estimation of the period effects. 

2. The intervention effect varied between clusters.  The standard model assumes that 

the intervention effect is common to all clusters. Treating an effect which truly varies 

as a fixed effect has been shown to lead to biased estimation of a covariate [6] and 

so the estimate of the intervention effect could be biased. 

In this paper, we first used a simulation study based on the motivating example to explore 

the effect of ignoring variability between the clusters in the period effect and intervention 

effect in the analysis of SWTs. Secondly, we hypothesised that the effect of misspecification 

would by highly influenced by the weight given to horizontal comparisons in each analysis 

model and so also performed a further set of simulations to investigate this question. We 

then analysed the motivating example with different analysis models and compared the 

results in light of the findings of the simulation studies. 

Simulation study methods 

Simulation study 1 
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To investigate the impact of ignoring heterogeneity between clusters in the period effect 

and intervention effect, we compared analysis models which assumed these effects were 

common to all clusters (the standard model) to analysis models which allowed these effects 

to vary between clusters. We performed this with data in which the true underlying period 

effect and intervention effect were either common to all clusters or varied between 

clusters. A description of the scenarios we used to compare the analysis models is given, 

followed by the three analysis models we compared. A summary of the data scenarios 

simulated is given in Table 1. 

We used the same trial design as our motivating example with clusters randomised into 

three groups and followed for two time-periods. During the first period, only the first group 

had received the intervention, and during the second time-period, the first and second 

groups had received the intervention. The third group never received the intervention. This 

trial design was chosen due to its simplicity; since there are only two time-periods, the 

period effect is simple to model. The horizontal comparison is only possible in one group; 

this allowed us to explore the weight given to this comparison. To mimic the motivating 

example and to avoid issues with small sample size, we assigned 25 clusters to each group 

and the number of observations in a cluster in each time-period was drawn from a log–

normal distribution (𝜇 = 6.9, 𝜎 = 0.74); this gave a geometric mean number of 

observations in each cluster in each time-period of 1,027 (IQR 669, 1,798).  

The cluster-level distribution of the outcome in the first period and the change from period 

one to period two (the period effect) was based on group 3 of the motivating example. This 

group was chosen because it did not receive the intervention. We modelled the log-odds in 

the first period and the log-odds ratio period effect from the motivating example as a 

bivariate normal distribution. This gave mean values for the log-odds in period one and log-

odds ratio period effect, together with a 2x2 covariance matrix. This distribution described 

the outcome and how it varied between the clusters in each period. The mean values were 

used in all the simulation scenarios, but we manipulated the covariance matrix to create 

four scenarios of how the outcome varied between the clusters and periods (Figure 2). The 

mean odds in the first period was 6.61 (a proportion of 87%), and the mean odds ratio 

period effect between the second and first period was 0.32, which was equivalent to an 

odds of 2.12 (proportion of 68%) in the second period. The covariance matrices for each of 

the four scenarios are given in supporting information S1 and are described below: 

(1) Common period effect, high variability: 

The period effect was common to all clusters with between-cluster variance = 1.81. 

This was the amount of between-cluster variability observed in year one of the 

motivating example. This represents a simple scenario with a large intracluster 

correlation coefficient (ICC=0.20), where the standard model would have a correctly 

specified period effect. 

(2) Common period effect, low variability: 

The period effect was common to all clusters with between-cluster variance = 0.25. 

This was the amount of between-cluster variability observed in year two of the 
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motivating example. This represents a simple scenario with a lower ICC (ICC=0.05), 

where, again, the standard model would have a correctly specified period effect. 

(3) Varying period effect, decreasing variability:  

The period effect varied between clusters with the variability between the clusters 

decreasing from the first period to the second period. The initial between-cluster 

variance was 1.81 and the period effect variance was 1.89. The decrease in variability 

from period one to period two resulted from a negative covariance between the 

initial value and the period effect of -1.72. This complex scenario reflects the 

underlying trends seen in the motivating example. In this scenario, the standard 

model would have a misspecified period effect. 

(4) Varying period effect, stable variability: 

The period effect varied between the clusters but the between-cluster variance 

remained the same for both periods. Here the initial between-cluster variability and 

period effect variability remained the same as in scenario (3) but the covariance was 

reduced to -0.94. This scenario was chosen to assess the effect of a varying period 

effect without the additional complication of the between-cluster variation reducing 

in the second period. In this scenario, the standard model would have a misspecified 

period effect. 

We simulated two scenarios for the intervention effect; these were not based on the 

motivating example: 

A. An intervention effect that was common to all clusters. We simulated an 

intervention effect log(OR)=0.41 (equivalent to OR=1.5) for all clusters. We also 

simulated log(OR)=0 to calculate the type I error rate. In these scenarios, the 

standard model would have a correctly specified intervention effect. 

B. An intervention effect that varied between clusters drawn from the distribution 

𝑙𝑜𝑔(𝑂𝑅)~𝑁(0.41, 0.3). This gave a geometric mean OR=1.5 with an IQR=1.05-1.97. 

We also simulated a distribution 𝑙𝑜𝑔(𝑂𝑅)~𝑁(0, 0.3) to calculate the type I error 

rate. In these scenarios, the standard model would have a misspecified intervention 

effect. 

The variation in the intervention effect was modelled as being independent of the 

underlying outcome and period effect between-cluster variability. This meant that the 

intervention effect varying between clusters would lead to increased variability between the 

clusters in period two as more clusters were receiving the intervention in this period.  

Each scenario led to the odds of the outcome occurring in each cluster-period. From this, 

the observations within each cluster-period were sampled from a binomial distribution, 

assuming independence within each cluster-period. This assumes a cross-sectional design 

and is a deviation from the motivating example, where children were observed multiple 

times during the study, chosen for simplicity.  

All combinations of these parameters were simulated. 

Simulation study 2 
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Secondly, we hypothesised that the horizontal comparisons would depend on the model 

assumptions more heavily than the vertical comparisons. To aid interpretation of the results 

of simulation study 1, we sought to investigate the contribution of the horizontal 

comparisons to each analysis in each scenario.  

In the trial design used for this paper, only group 2 contributed horizontal comparisons 

because groups 1 and 3 remained in the same condition for both periods of the study (see 

Figure 1). This meant that we could investigate the weights given to the horizontal and 

vertical comparisons by identifying how much weight was given to group 2 relative to 

groups 1 and 3.  

To do this, we re-ran the simulations but with an intervention effect log(OR)=1.5 in group 2 

of the trial but kept an intervention effect in group 1 of log(OR)=0.41. An unbiased 

intervention effect estimate from horizontal comparisons alone would have expectation 

𝐸(𝑙𝑜𝑔(𝑂𝑅)) = 1.5. An unbiased intervention effect estimate from vertical comparisons 

alone would have expectation 0.41 < 𝐸(𝑙𝑜𝑔(𝑂𝑅)) < 1.5 depending on the weights given 

to each cluster and to periods one and two of the trial. Comparing the intervention effect 

estimates of each model in each scenario to the horizontal comparison 𝐸(𝑙𝑜𝑔(𝑂𝑅)) =

1.5 allowed us to see how much the horizontal comparisons contributed to the analysis 

compared to the vertical comparisons. Such a large imbalance in the intervention effect 

between groups is, of course, unlikely (although not impossible); this simulation study was 

designed to investigate the contributions of vertical and horizontal comparisons, rather than 

to explore a realistic scenario.  

Analysis Models 

Each simulated data set was analysed with three analysis models, each making different 

assumptions about the period effect and intervention effect. 

Standard model:  

First, we used the standard method of analysis [4, 5]: a mixed effect logistic regression with 

a random intercept and fixed effects for intervention effect and period effect: 

 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛽𝑍𝑗 + 𝜃𝑋𝑖𝑗 +  𝑢𝑖   ( 1 ) 

where 𝑦𝑖𝑗𝑘 is the log odds of the outcome in cluster i in year j for observation k, 𝜇 is the 

mean log odds of the outcome in period one in the control condition, 𝛽 is the period effect 

log odds ratio comparing the outcome in periods two and one, 𝑍𝑗is an indicator of year; 0 

for the first year and 1 for the second year, 𝜃 is the intervention effect log odds ratio, and 

𝑋𝑖𝑗 is an indicator of whether cluster i received the intervention in year j,  𝑢𝑖~𝑁(0, 𝜎𝑢
2) is a 

random intercept allowing for variability in the outcome between clusters. 

This model assumes the period effect and the intervention effect are common to all clusters 

so is a misspecified model in scenarios where either the period effect or intervention effect 

varied between clusters. 

Random period model: 
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Second, we added a random effect for period to the standard model:  

 𝑦𝑖𝑗𝑘 = 𝜇 + (𝛽 + 𝑣𝑖)𝑍𝑗  + 𝜃𝑋𝑖𝑗  +  𝑢𝑖  ( 2 ) 

where and (
𝑢𝑖

𝑣𝑖
) ~𝑀𝑉𝑁 ((

0
0

) , (
𝜎𝑢

2 𝜎𝑢,𝑣 
2

𝜎𝑢,𝑣 
2 𝜎𝑣

2 )) are a random intercept and random effect for 

period respectively. 

This model assumes that the intervention effect is common to all clusters but allows the 

period effect to vary between clusters. It is a misspecified model in scenarios where the 

intervention effect varies between the clusters. 

Sometimes, other literature has used a different model to allow the period effect to vary 

between the clusters [11, 12]. For details on how these models relate to one another, see 

supporting information S2 

Random intervention model: 

Third, we added a random effect for the intervention to the standard model: 

 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛽𝑍𝑗 + (𝜃 + 𝑧𝑖)𝑋𝑖𝑗 +  𝑢𝑖  ( 3 ) 

where (
𝑢𝑖

𝑧𝑖
) ~𝑀𝑉𝑁 ((

0
0

) , (
𝜎𝑢

2 𝜎𝑢,𝑧 
2

𝜎𝑢,𝑧 
2 𝜎𝑧

2 ))  are a random intercept and random effect for 

intervention respectively. 

This model assumes that the period effect is common to all clusters but allows the 

intervention effect to vary between clusters. The model is a misspecified model in scenarios 

where the period effect varies between the clusters.  

Whilst the random period and random intervention models allow for variability in the period 

and intervention effect respectively, they can estimate a variability of close to zero if the 

effect is common to all clusters. The random period model is correctly specified in the 

scenario with common period effect, and likewise the random intervention model is 

correctly specified in the scenario with common intervention effect. Similarly, the random 

intervention model allows for a covariance between the intervention effect and the 

intercept (𝜎𝑢,𝑧 
2 ) but allows this covariance to be zero, as is the case in our simulation study. 

Estimands and performance measures 

We ran 500 simulations for each combination of parameters. This allowed us to estimate 

the intervention effect to within 5% accuracy assuming a variance estimate of 0.05. This 

variance is conservative as it is larger than the estimated variance we saw in the motivating 

example.  

From the analysis models, we collected the estimated fixed effects, their standard errors, 

and the estimated between-cluster covariance matrix.  
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We calculated the mean, standard deviations, 95% confidence intervals, and the 

interquartile range of the intercept, intervention effect, and period effect estimates from 

the 500 simulations. We calculated percentage bias as: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑏𝑖𝑎𝑠 = (
𝛽̅̂ − 𝛽

𝛽
) 

Where 𝛽 is the true effect and 𝛽̅̂ is the mean of the effect estimates. 

We calculated the coverage of 95% confidence intervals as the proportion of simulations 

with the true effect contained within the 95% confidence interval of the estimate. We 

calculated the type 1 error rate as the proportion of simulations with true OR=1 with p<0.05 

against a null of the intervention effect OR=1.   

In the set of simulations with a different intervention effect in group 2 (Simulation study 2), 

we compared the mean of the intervention effect estimates to the horizontal intervention 

effect comparison of log(OR)=1.5.  

Simulations were run in R version 3.2, the lme4 package was used for mixed effect models. 

Results 

Model convergence 

The standard model converged in all simulations for both simulation studies. When either 

the period effect or the intervention effect varied between clusters the random period and 

random intervention models also converged in >99% of all simulations. However, when both 

period effect and intervention effect were common to all clusters, the random period model 

failed to converge in 3% to 9% of simulations, and the random intervention model failed to 

converge in 4% to 33% of simulations. Estimates from these models were excluded from 

performance statistics.  Further details of convergence of the models is given in supporting 

information S3. 

Simulation study 1 results 

Bias of fixed effect estimates 

Figure 3 gives the mean and IQR of intervention effect estimates for each scenario. A table 

of the mean values is given in supporting information S4. 

Where there were common period and intervention effects, all three models performed 

similarly, with estimation of the intervention effect in line with the true underlying effect.  

Where the period effect varied between the clusters, only the random period model gave 

unbiased estimates of the intervention effect. Depending on the scenario, the standard 

model had between -20% and -8% bias and the random intervention model between -51% 

and -8% bias. Bias was larger when the period effect varied with decreasing variability than 

with stable variability but was similar regardless of whether there was a common or varying 

intervention effect. We also observed bias in the period effect estimates and intercept 
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estimates from the standard model and random intervention model (supporting 

information S5 and S6). 

Where the intervention effect varied between the clusters and there was a common period 

effect, the random intervention model and the random period model gave unbiased 

estimates of the intervention effect. Only the standard model intervention effect estimates 

had substantial bias (-9% and -16% bias for common period effects with high and low 

variability respectively). 

Where either the period effect or intervention effect varied between clusters, the standard 

model intervention effect estimates had greater variability compared to the random period 

model or random intervention model. Differences were larger when the period effect varied 

between clusters than when the intervention effect varied between clusters. For example, 

the standard model intervention effect estimates were 3.6 times as variable as the random 

period model estimates when the period effect varied between clusters with decreasing 

variability with common intervention effect. Whereas, the standard model intervention 

effect estimates were 1.5 times as variable as the random intervention model estimates 

when the intervention effect varied between clusters with common period effect with high 

variability. 

Standard errors, coverage, and type 1 error 

In scenarios with a common period and intervention effects, 95% coverage was maintained 

regardless of the analysis model and the estimated standard errors were similar across 

analysis models (Figure 4 and supporting information S7 and S8).  

When period effect or intervention effect varied between clusters, the standard model gave 

standard errors that were markedly smaller than the random period model and random 

intervention model. The mean intervention effect standard error from the standard model 

was less than 0.33 and 0.26 times the mean standard error of the random period model and 

random intervention model respectively.  

The inappropriately small standard errors given by the standard model were in part 

explained by downward bias in the estimation of between-cluster variability (see supporting 

information S9). For example, when variability was stable over the two time-periods with a 

variance of 1.79 the standard model estimated the variance as 1.26. 

The bias in estimates, standard errors, and increased variability in estimates led to under-

coverage of the 95% confidence intervals of the intervention effect estimates (Figure 4). For 

the standard model, under-coverage was severe when either the intervention effect or the 

period effect varied between clusters (<25% coverage). Similarly, the random intervention 

model had under-coverage when the period effect varied between clusters (74% and 88% 

coverage for decreasing and stable variability respectively) regardless of intervention effect 

variability. Finally, the random period model had under-coverage of confidence intervals 

when the intervention effect varied between clusters with a common period effect (86% 

and 88% coverage for common period effect with high and low variability respectively).  

Type 1 error rates followed the same patterns as coverage (supporting information S10). 
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Simulation study 2 results 

Figure 5 gives the estimated log odds ratios for each scenario where the group 1 and 2 

intervention effects differed (𝑙𝑜𝑔(𝑂𝑅) = 0.41 in group 1 and 𝑙𝑜𝑔(𝑂𝑅) = 1.5 in group 2).  

All analysis models gave a mean estimated intervention effect close to the group 2 effect 

when there was a common period effect and a common intervention effect; this was the 

case in the high and low variability scenarios. This suggests that in these scenarios the 

intervention effect is largely estimated from horizontal within-cluster comparisons in group 

2; groups 1 and 3 appeared to contribute to estimation of the period effect but had little 

influence on the intervention effect estimate.  

The standard model estimates remained close to the group 2 intervention effect in all 

scenarios. The downward bias we observed in our first set of simulations suggests that at 

least some of the movement away from the group 2 effect is because of bias and not 

because of a reduction in the contribution of the horizontal comparisons. This implies that 

the standard model was continuing to estimate the intervention effect largely from 

horizontal comparisons in group 2.  

In contrast, when the period effect varied between clusters, the random period model gave 

intervention effect estimates much further from the horizontal comparison estimates. This 

implies that the horizontal comparisons in group 2 could not contribute as much 

information to the analysis because there was less certainty about separating the period 

effect and intervention effect in these comparisons.  This was similar in the scenarios where 

the intervention effect varied between clusters but the period effect was common for both 

the random period and random intervention models, but to a smaller degree. 

Example 

For our motivating example, we hypothesised that the standard model gave a larger 

intervention effect than either of the two time-periods analysed separately because the 

standard model was misspecified, either by ignoring variability in the period effect or the 

intervention effect. Our simulation study suggests that this is not the case because we 

would expect the standard model to underestimate the intervention effect with these types 

of misspecification, rather than overestimate the effect. However, we also found that the 

standard model gave a very large weight to the horizontal comparisons. This does help to 

explain the counterintuitive results seen in the motivating example [2]. 

We reanalysed the deworming trial using the three analysis models investigated in the 

simulation study, and additionally looked at year one and two separately using a mixed 

effect model with a fixed effect for intervention and a random intercept to attain estimates 

for the intervention effect from vertical comparisons. In line with the published reanalysis of 

this study, we ignored pupil-level clusters from multiple observations of the same pupils; 

this is in line with research suggesting it is sufficient to adjust for the highest level of 

clustering alone, known as passing the buck [13]. 
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The results, in Table 2, are different from the published reanalysis as we have used a 

different version of the data (see supporting information S11 for details) and have not 

adjusted for covariates other than period [14].  

We found that the standard model combining data from both years of the study gave a 

larger estimate of the intervention effect than either year analysed separately, which is as 

was found in the reanalysis [4].  

Adjusting for variation between clusters in the period effect or intervention effect (i.e. using 

either the random period model or random intervention model) increased the intervention 

effect standard error and reduced the intervention effect towards the null. Both approaches 

gave an intervention effect estimate between the estimated effect in year one and year 

two. This suggests that the horizontal comparisons are contributing less to these analysis 

models than to the standard model; this is consistent with the findings of our second 

simulation study into the contribution of the horizontal comparisons. 

The random period model found strong evidence of variability in the period effect 

(p<0.001), and the random intervention model found strong evidence of variability in the 

intervention effect (p<0.001). Since the period effect and intervention effect are 

confounded with one another, evidence of variability in the intervention effect could be 

caused by variability in the period effect or vice versa. The random period model estimated 

a between-cluster covariance matrix similar to the simulation study scenario with varying 

period effect with decreasing variability. The random intervention model estimated lower 

variability between clusters in the intervention condition than in the control condition 

because of the reduced variability in year two. This is a scenario that we did not consider in 

our simulation study where we only investigated a scenario with greater variability in the 

intervention condition. Inspection of the data suggests that the random period model is the 

most appropriate one. A mixed effect model with a random effect for period run on 

observations from group 3, which never received the intervention, finds strong evidence of 

variability in the period effect (p<0.001). But, a mixed effect model with a random effect for 

intervention run on observations from groups one and three, where the intervention effect 

is not confounded with the period effect, finds no evidence of variability in the intervention 

effect (p=0.34). 

The random period model suggests that there is some evidence that the deworming 

intervention increased school attendance (OR=1.26, 95% CI 1.02, 1.57; p=0.03). The effect 

found using this model is weaker, both in terms of absolute size and level of statistical 

significance, than the effect found using the standard model. There are still limitations in 

these data and this analysis, on which further information has been published elsewhere [1-

3]. 

Discussion 

We found biased estimates and serious under-coverage of confidence intervals in the SWT 

scenarios we simulated when the analysis model ignored variability between clusters in the 

period effect or intervention effect. In these scenarios, results from the standard model 

were driven largely by the horizontal comparisons. 
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We have shown that, in the scenarios we considered, misspecifying the random effects of 

mixed effect models can result in biased intervention effect estimates. The standard model 

underestimated the intervention effect when either the period or the intervention effect 

varied between the clusters. The underestimation when the period effect varied may result 

from the standard model estimating an intervention effect averaged over the two periods, 

whereas the true effect for this scenario was a within-period intervention effect. This is 

analogous to the difference between the population-averaged effect and the cluster-specific 

effects that are given by different analysis methods. In the presence of intervention effect 

variability the standard model also gave biased estimates of the intervention effect. The 

random intervention model had even larger bias when it was misspecified than the standard 

model. Conversely, the random period model had only negligible bias in estimates in all 

scenarios we considered. These results are consistent with previous research into 

misspecifying mixed effect models in cluster randomised trials [7, 9]. We have built on this 

literature and shown that these results extend to SWTs. This highlights how sensitive mixed 

effect models can be to misspecification of model assumptions. 

Caution is needed beyond estimation of the intervention effect itself. In our simulation 

study, the bias extended to standard errors and between-cluster variability. The latter has 

implications for reporting the ICC, as recommended by the CONSORT guidelines [15]. In 

addition to the implications for inference, the bias in standard errors has implications for 

determining the power and sample size of SWTs. Since the standard error from the standard 

model is used in most current methods of SWT sample size calculations [12, 16-18], they 

should not be applied when the period effect or intervention effect are expected to vary 

between clusters, at least in relation to the characteristics of the trial exemplar used in this 

paper. Instead, the method developed by Hooper et al may be more appropriate [11]. 

The result of these biases was under-coverage of confidence intervals for the intervention 

effect. If model assumptions do not hold, we risk being over-confident in our conclusions. 

We found particularly severe under-coverage when using the standard model. This has been 

seen in previous research into misspecified random effects [6, 19] and has recently been 

seen in the setting of SWTs [20]. This is reflected in our analysis of the motivating example; 

we see a large increase in the standard error of the intervention effect, and so confidence 

intervals are much wider when moving from the standard model to the random period 

model or random intervention model.  

The results from our simulation study could be explained by the excessive weight given to 

the horizontal comparisons, even with a lower ICC=0.05. Because the horizontal 

comparisons are within-cluster comparisons, they avoid the additional variability of 

between-cluster variation. This means that if the period and intervention effects can be 

separated, the horizontal comparisons will be given more weight than the vertical 

comparisons by all the analysis models we considered. However, by making the stringent 

assumption that period and intervention effects are the same in every cluster, the standard 

model assumes too much certainty in separating the period and intervention effects. The 

reason that the standard model performed poorly in the simulation study was because of its 

reliance on the horizontal comparisons.  
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In the design we studied, the weight given to horizontal comparisons also meant that 

greater weight was given to some groups of clusters than others. The implications of this are 

not well understood. When there is a large difference in the weight given to each group, the 

intervention effect estimate no longer represents an average effect across the clusters and 

interpretation becomes more difficult. Further research is needed to explore this issue in 

more traditional SWT designs with more groups and when all clusters have observations in 

the control and intervention conditions, and so all clusters contribute through horizontal 

comparisons. 

A criticism of the random intervention model and, to a lesser extent, the random period 

model is that they sometimes had problems with convergence. This occurred almost 

exclusively when both the period effect and the intervention effect were common to all 

clusters; the non-convergence resulted from the models attempting to estimate a true 

variance of zero, the boundary of the parameter. In this scenario, all the analysis models 

gave unbiased effect estimates and appropriate confidence interval coverage. We would 

suggest that an analysis plan gives an alternative, simpler model to use in case of 

convergence issues due to lack of variability. In our simulation study, this procedure gave 

good coverage and no bias in the scenarios with common period effect and intervention 

effect, where convergence was an issue (data not shown). 

Given that the mixed effect model can be so sensitive to model assumptions, other analysis 

methods should be considered. This choice should be pre-specified and prior knowledge 

used to justify the assumptions made by the chosen analysis method. We found the random 

period model to be the most robust of the models considered, but there was still under-

coverage of confidence intervals in some scenarios. Some have suggested using 

permutation tests on the standard model [20]. Although this will give correct inference, 

there is still a risk of biased intervention effect estimation. Alternative analysis methods 

which make fewer assumptions may be more appropriate. Generalised estimating equations 

have been suggested for the analysis of SWTs [21] and have been shown to be more robust 

to misspecification of the correlations in the data in other settings [22], but this robustness 

has yet to be assessed in the context of SWTs. Analysis methods which only make use of the 

vertical comparisons are desirable as they require no assumptions about period effects but 

there are no such methods currently published and these analyses are less efficient [23]. 

Sensitivity analysis could also be used to assess the robustness of results.  

We have only considered a limited range of designs in this simulation study. We used a very 

simple SWT design to make the analyses as transparent as possible, this design only had two 

steps and not all clusters received the intervention in the course of the study. Further 

research is needed to confirm that our findings hold for other SWT designs. In more 

traditional SWTs, all clusters receive both the control and intervention conditions and so all 

clusters contribute horizontal comparisons. Since the problems we highlight arise from the 

horizontal comparisons, this might exacerbate the problems we identified. We have only 

considered two values for the ICC when the period effect was common to all clusters and 

have not assessed the effect of ICC when period effects vary between clusters. In scenarios 

where these effects varied between clusters, the baseline ICC was 0.20 which in many 
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contexts would be considered large. Additionally, there was large variability in the period 

effect; the effect of a less variable period effect needs further exploration. It is not known 

how common it is for the period and intervention effects to vary between clusters in 

practice; however, we have based this simulation on real trial data. Large clusters were used 

in the simulation study to reflect the motivating deworming trial; however similar results 

were seen with a smaller mean cluster size of 250 (data not shown). We used a large 

number of clusters in each group to avoid small sample issues.  

Whilst further research is needed to explore the potential for bias in a wider range of 

designs and settings, we have demonstrated that there is a potential for the standard model 

to give biased intervention effect estimates and under-coverage of confidence intervals. 

These simulations provide clear evidence that the standard model for analysis of SWTs can 

be both highly sensitive to the data meeting the model assumptions and highly dependent 

on non-randomised horizontal comparisons. We urge those conducting SWTs to ensure an 

appropriate analysis is used. 
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Table 1: Summary of simulation study data scenarios  

 

Description 

Similar to 
motivating 
example? 

Common to all simulations   
Number of groups 3 Yes 
Number of time-periods 2. In period 1 group 1 receive the intervention.  

In period 2 groups 1 and 2 receive the intervention 
Yes 

Number of clusters 75 Yes 
Cluster size Log-normal(6.9, 0.74) in each year. Geometric 

mean=1027 
Yes 

Correlation of 
measurements within 
clusters 

Independent, assumes each measurement is from a 
different individual 

No 

Mean outcome in year one  Odds = 6.61 Yes 
Mean change in outcome 
from year one to year two 

Odds ratio = 0.32 Yes 

 
Different scenarios  

  

Period effect 1. Common period effect, High variability No 

2. Common period effect, Low variability No 
3. Varying period effect, Decreasing Variability Yes 
4. Varying period effect, Stable variability No 

Intervention effect A. Log(OR)=0.41 common to all clusters No 
 B. Log(OR)=0.41, varying between clusters No 
Intervention effect in 
group 2 

  

Simulation study 1: Intervention effect in group 2 the same as group 1 
log(OR)=0.41 

No 

Simulation study 2: Intervention effect in group 2 is log(OR)=1.5 and group 
1 is log(OR)=0.41 

No 

 

  



Page 17 of 17 
 

 

Table 2: Intervention effect estimates from motivating example with different analysis models 

Model 
Odds Ratio 

(95% CI) 
Standard 

error P value 
P value of random period 

or intervention effect 

Separate year analysis 
(Vertical comparisons) 

    

Year one 1.67 (0.90,3.10) 0.32 0.11  
Year two 1.19 (0.95, 1.50) 0.12 0.13  

Combined analysis     
Standard model 1.74 (1.67, 1.81) 0.02 <0.001  
Random Period model 1.26 (1.02, 1.57) 0.11 0.03 <0.001 
Random Intervention model 1.25 (0.96, 1.62) 0.13 0.09 <0.001 

 


