105 research outputs found

    Glucocorticoid-Induced Osteoporosis – A Disorder of Mesenchymal Stromal Cells?

    Get PDF
    Glucocorticoids are a class of steroid hormones that are essential to life but cause serious harm in excess. The main clinical features of glucocorticoid excess are due to adverse effects on cells and tissues that arise from a common developmental precursor – the mesenchymal stromal cell (MSC; sometimes referred to as the mesenchymal stem cell). Interestingly glucocorticoids appear essential for the differentiation of cells and tissues that arise from MSCs. High levels of glucocorticoids are used in tissue engineering strategies to enhance the formation of tissues such as bone, cartilage, and muscle. This article discusses the paradox that glucocorticoids both enhance and impair MSC development and function. It will describe how endogenous glucocorticoids are likely to be important in these processes in vivo and will discuss the implications for therapies aimed at reducing the damage associated with the use of therapeutic glucocorticoids

    Cortisol excess in chronic kidney disease – A review of changes and impact on mortality

    Get PDF
    Chronic kidney disease (CKD) describes the long-term condition of impaired kidney function from any cause. CKD is common and associated with a wide array of complications including higher mortality, cardiovascular disease, hypertension, insulin resistance, dyslipidemia, sarcopenia, osteoporosis, aberrant immune function, cognitive impairment, mood disturbances and poor sleep quality. Glucocorticoids are endogenous pleiotropic steroid hormones and their excess produces a pattern of morbidity that possesses considerable overlap with CKD. Circulating levels of cortisol, the major active glucocorticoid in humans, are determined by a complex interplay between several processes. The hypothalamic-pituitary-adrenal axis (HPA) regulates cortisol synthesis and release, 11β-hydroxysteroid dehydrogenase enzymes mediate metabolic interconversion between active and inactive forms, and clearance from the circulation depends on irreversible metabolic inactivation in the liver followed by urinary excretion. Chronic stress, inflammatory states and other aspects of CKD can disturb these processes, enhancing cortisol secretion via the HPA axis and inducing tissue-resident amplification of glucocorticoid signals. Progressive renal impairment can further impact on cortisol metabolism and urinary clearance of cortisol metabolites. Consequently, significant interest exists to precisely understand the dysregulation of cortisol in CKD and its significance for adverse clinical outcomes. In this review, we summarize the latest literature on alterations in endogenous glucocorticoid regulation in adults with CKD and evaluate the available evidence on cortisol as a mechanistic driver of excess mortality and morbidity. The emerging picture is one of subclinical hypercortisolism with blunted diurnal decline of cortisol levels, impaired negative feedback regulation and reduced cortisol clearance. An association between cortisol and adjusted all-cause mortality has been reported in observational studies for patients with end-stage renal failure, but further research is required to assess links between cortisol and clinical outcomes in CKD. We propose recommendations for future research, including therapeutic strategies that aim to reduce complications of CKD by correcting or reversing dysregulation of cortisol

    Cerebral oxidative stress and microvasculature defects in TNF-α expressing transgenic and Porphyromonas gingivalis-infected ApoE-/- mice

    Get PDF
    The polymicrobial dysbiotic subgingival biofilm microbes associated with periodontal disease appear to contribute to developing pathologies in distal body sites, including the brain. This study examined oxidative stress, in the form of increased protein carbonylation and oxidative protein damage, in the tumour necrosis factor-α (TNF-α) transgenic mouse that models inflammatory TNF-α excess during bacterial infection; and in the apolipoprotein knockout (ApoE-/-) mouse brains, following Porphyromonas gingivalis gingival monoinfection. Following 2,4-dinitrophenylhydrazine derivatization, carbonyl groups were detected in frontal lobe brain tissue lysates by immunoblotting and immunohistochemical analysis of fixed tissue sections from the frontotemporal lobe and the hippocampus. Immunoblot analysis confirmed the presence of variable carbonyl content and oxidative protein damage in all lysates, with TNF-α transgenic blots exhibiting increased protein carbonyl content, with consistently prominent bands at 25 kDa (p = 0.0001), 43 kDa and 68 kDa, over wild-type mice. Compared to sham-infected ApoE-/- mouse blots, P. gingivalis-infected brain tissue blots demonstrated the greatest detectable protein carbonyl content overall, with numerous prominent bands at 25 kDa (p = 0.001) and 43 kDa (p = 0.0001) and an exclusive band to this group between 30-43 kDa* (p = 0.0001). In addition, marked immunostaining was detected exclusively in the microvasculature in P. gingivalis-infected hippocampal tissue sections, compared to sham-infected, wild-type and TNF-α transgenic mice. This study revealed that the hippocampal microvascular structure of P. gingivalis-infected ApoE-/- mice possesses elevated oxidative stress levels, resulting in the associated tight junction proteins being susceptible to increased oxidative/proteolytic degradation, leading to a loss of functional integrity

    Seeking the Local Convergence Depth. V. Tully-Fisher Peculiar Velocities for 52 Abell Clusters

    Full text link
    We have obtained I band Tully-Fisher (TF) measurements for 522 late-type galaxies in the fields of 52 rich Abell clusters distributed throughout the sky between 50 and 200\h Mpc. Here we estimate corrections to the data for various forms of observational bias, most notably Malmquist and cluster population incompleteness bias. The bias-corrected data are applied to the construction of an I band TF template, resulting in a relation with a dispersion of 0.38 magnitudes and a kinematical zero-point accurate to 0.02 magnitudes. This represents the most accurate TF template relation currently available. Individual cluster TF relations are referred to the average template relation to compute cluster peculiar motions. The line-of-sight dispersion in the peculiar motions is 341+/-93 km/s, in general agreement with that found for the cluster sample of Giovanelli and coworkers.Comment: 31 pages, 14 figures, uses AAS LaTeX; to appear in the Astronomical Journa

    Differential expression, function and response to inflammatory stimuli of 11β-hydroxysteroid dehydrogenase type 1 in human fibroblasts: a mechanism for tissue-specific regulation of inflammation

    Get PDF
    Stromal cells such as fibroblasts play an important role in defining tissue-specific responses during the resolution of inflammation. We hypothesized that this involves tissue-specific regulation of glucocorticoids, mediated via differential regulation of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Expression, activity and function of 11β-HSD1 was assessed in matched fibroblasts derived from various tissues (synovium, bone marrow and skin) obtained from patients with rheumatoid arthritis or osteoarthritis. 11β-HSD1 was expressed in fibroblasts from all tissues but mRNA levels and enzyme activity were higher in synovial fibroblasts (2-fold and 13-fold higher mRNA levels in dermal and synovial fibroblasts, respectively, relative to bone marrow). Expression and activity of the enzyme increased in all fibroblasts following treatment with tumour necrosis factor-α or IL-1β (bone marrow: 8-fold and 37-fold, respectively, compared to vehicle; dermal fibroblasts: 4-fold and 14-fold; synovial fibroblasts: 7-fold and 31-fold; all P < 0.01 compared with vehicle). Treatment with IL-4 or interferon-γ was without effect, and there was no difference in 11β-HSD1 expression between fibroblasts (from any site) obtained from patients with rheumatoid arthritis or osteoarthritis. In the presence of 100 nmol/l cortisone, IL-6 production – a characteristic feature of synovial derived fibroblasts – was significantly reduced in synovial but not dermal or bone marrow fibroblasts. This was prevented by co-treatment with an 11β-HSD inhibitor, emphasizing the potential for autocrine activation of glucocorticoids in synovial fibroblasts. These data indicate that differences in fibroblast-derived glucocorticoid production (via the enzyme 11β-HSD1) between cells from distinct anatomical locations may play a key role in the predeliction of certain tissues to develop persistent inflammation
    corecore