224 research outputs found

    A new class of random processes with application to helicopter noise

    Get PDF
    The concept of dividing random processes into classes (e.g., stationary, locally stationary, periodically correlated, and harmonizable) has long been employed. A new class of random processes is introduced which includes many of these processes as well as other interesting processes which fall into none of the above classes. Such random processes are denoted as linearly correlated. This class is shown to include the familiar stationary and periodically correlated processes as well as many other, both harmonizable and non-harmonizable, nonstationary processes. When a process is linearly correlated for all t and harmonizable, its two-dimensional power spectral density S(x)(omega 1, omega 2) is shown to take a particularly simple form, being non-zero only on lines such that omega 1 to omega 2 = + or - r(k) where the r(k's) are (not necessarily equally spaced) roots of a characteristic function. The relationship of such processes to the class of stationary processes is examined. In addition, the application of such processes in the analysis of typical helicopter noise signals is described

    On a class of nonstationary stochastic processes

    Get PDF
    A new class of nonstationary stochastic processes is introduced and some of the essential properties of its members are investigated. This class is richer than the class of stationary processes and has the potential of modeling some nonstationary time series. The relation between these newly defined processes with other important classes of nonstationary processes is investigated. Several examples of linearly correlated processes which are not stationary, periodically correlated, or harmonizable are given

    The Science and Art of Health Behavior: Theory of Prevention.

    Get PDF
    poster abstractAccording to Glanz, Rimer and Viswanath (2008), “The science and art of health behavior and health education are eclectic and rapidly evolving; they reflect an amalgamation of approaches, methods, and strategies from social and health sciences, drawing on theoretical perspectives, research, practice tools of such diverse disciplines as psychology, sociology, anthropology, communications, nursing, economics, and marketing” (p. 1). The view of health education as an instrument of social change has received renewed interest in the past few years. Most recently, experts have recommended that interventions on social and behavioral factors related to health should link multiple levels of influence, including the individual, interpersonal, institutional, community, and policy levels (Smedley and Syme, 2000). The author’s current work on a health education simulation titled; Suicide Intervention Prevention focuses on a health behavior theory of prevention. Prevention theory is used to guide the framework for this simulation. Examples of causal relationships (immersion and interaction) between the characters in the simulation and the participant (player) become more meaningful and provide a unique platform to promote health education on the topic of mental health. Prevention theory enhances our work as researchers and practitioners in many ways. Theory helps us build the science of prevention by directing our hypotheses and research questions and informs the selection of appropriate populations to study. “Ultimately, theories of prevention determine intervention approaches including individual treatments, models of health care delivery, public health practice, and health policy” (Shumaker, Ockene, & Riekert, 2009, p. 4)

    ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA)

    Get PDF
    The proceedings of the Benchmark Problems in Computational Aeroacoustics Workshop held at NASA Langley Research Center are the subject of this report. The purpose of the Workshop was to assess the utility of a number of numerical schemes in the context of the unusual requirements of aeroacoustical calculations. The schemes were assessed from the viewpoint of dispersion and dissipation -- issues important to long time integration and long distance propagation in aeroacoustics. Also investigated were the effect of implementation of different boundary conditions. The Workshop included a forum in which practical engineering problems related to computational aeroacoustics were discussed. This discussion took the form of a dialogue between an industrial panel and the workshop participants and was an effort to suggest the direction of evolution of this field in the context of current engineering needs

    Reynolds number influences in aeronautics

    Get PDF
    Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical portion of the problem

    Measurement error adjustment in essential fatty acid intake from a food frequency questionnaire: alternative approaches and methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed at assessing the degree of measurement error in essential fatty acid intakes from a food frequency questionnaire and the impact of correcting for such an error on precision and bias of odds ratios in logistic models. To assess these impacts, and for illustrative purposes, alternative approaches and methods were used with the binary outcome of cognitive decline in verbal fluency.</p> <p>Methods</p> <p>Using the Atherosclerosis Risk in Communities (ARIC) study, we conducted a sensitivity analysis. The error-prone exposure – visit 1 fatty acid intake (1987–89) – was available for 7,814 subjects 50 years or older at baseline with complete data on cognitive decline between visits 2 (1990–92) and 4 (1996–98). Our binary outcome of interest was clinically significant decline in verbal fluency. Point estimates and 95% confidence intervals were compared between naïve and measurement-error adjusted odds ratios of decline with every SD increase in fatty acid intake as % of energy. Two approaches were explored for adjustment: (A) External validation against biomarkers (plasma fatty acids in cholesteryl esters and phospholipids) and (B) Internal repeat measurements at visits 2 and 3. The main difference between the two is that Approach B makes a stronger assumption regarding lack of error correlations in the structural model. Additionally, we compared results from regression calibration (RCAL) to those from simulation extrapolation (SIMEX). Finally, using structural equations modeling, we estimated attenuation factors associated with each dietary exposure to assess degree of measurement error in a bivariate scenario for regression calibration of logistic regression model.</p> <p>Results and conclusion</p> <p>Attenuation factors for Approach A were smaller than B, suggesting a larger amount of measurement error in the dietary exposure. Replicate measures (Approach B) unlike concentration biomarkers (Approach A) may lead to imprecise odds ratios due to larger standard errors. Using SIMEX rather than RCAL models tends to preserve precision of odds ratios. We found in many cases that bias in naïve odds ratios was towards the null. RCAL tended to correct for a larger amount of effect bias than SIMEX, particularly for Approach A.</p

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p
    • …
    corecore