42 research outputs found

    COVID-19 and gendered governance: countries led by women did not employ more stringent strategies than those led by men – but they did act faster

    Get PDF
    Mette Marie Staehr Harder and Christoffer Bugge Harder examine whether countries led by women applied more extensive measures to combat COVID-19 than those led by men. While they find no indications that the former applied more extensive health responses over time, OECD countries led by women did enact their respective maximum shutdown measures significantly more quickly than those led by men

    Local diversity of heathland Cercozoa explored by in-depth sequencing

    Get PDF
    Cercozoa are abundant free-living soil protozoa and quantitatively important in soil food webs; yet, targeted high-throughput sequencing (HTS) has not yet been applied to this group. Here we describe the development of a targeted assay to explore Cercozoa using HTS, and we apply this assay to measure Cercozoan community response to drought in a Danish climate manipulation experiment (two sites exposed to artificial drought, two unexposed). Based on a comparison of the hypervariable regions of the 18S ribosomal DNA of 193 named Cercozoa, we concluded that the V4 region is the most suitable for group-specific diversity analysis. We then designed a set of highly specific primers (encompassing ~270 bp) for 454 sequencing. The primers captured all major cercozoan groups; and >95% of the obtained sequences were from Cercozoa. From 443 350 high-quality short reads (>300 bp), we recovered 1585 operational taxonomic units defined by >95% V4 sequence similarity. Taxonomic annotation by phylogeny enabled us to assign >95% of our reads to order level and ~85% to genus level despite the presence of a large, hitherto unknown diversity. Over 40% of the annotated sequences were assigned to Glissomonad genera, whereas the most common individually named genus was the euglyphid Trinema. Cercozoan diversity was largely resilient to drought, although we observed a community composition shift towards fewer testate amoebae

    Towards diagnostic metagenomics of Campylobacter in fecal samples

    Get PDF
    Abstract Background The development of diagnostic metagenomics is driven by the need for universal, culture-independent methods for detection and characterization of pathogens to substitute the time-consuming, organism-specific, and often culture-based laboratory procedures for epidemiological source-tracing. Some of the challenges in diagnostic metagenomics are, that it requires a great next-generation sequencing depth and unautomated data analysis. Results DNA from human fecal samples spiked with 7.75 × 101−7.75 × 107 colony forming unit (CFU)/ml Campylobacter jejuni and chicken fecal samples spiked with 1 × 102–1 × 106 CFU/g Campylobacter jejuni was sequenced and data analysis was done by the metagenomic tools Kraken and CLARK. More hits were obtained at higher spiking levels, however with no significant linear correlations (human samples p = 0.12, chicken samples p = 0.10). Therefore, no definite detection limit could be determined, but the lowest spiking levels found positive were 7.75 × 104 CFU/ml in human feces and 103 CFU/g in chicken feces. Eight human clinical fecal samples with estimated Campylobacter infection loads from 9.2 × 104–1.0 × 109 CFU/ml were analyzed using the same methods. It was possible to detect Campylobacter in all the clinical samples. Conclusions Sensitivity in diagnostic metagenomics is improving and has reached a clinically relevant level. There are still challenges to overcome before real-time diagnostic metagenomics can replace quantitative polymerase chain reaction (qPCR) or culture-based surveillance and diagnostics, but it is a promising new technology

    In vitro evidence of root colonization suggests ecological versatility in the genus Mycena

    Get PDF
    Acknowledgements: The European commission is acknowledged for a MSCA grant to C.B.H (grant no. 658849), the University of Oslo for further funding of the project, and the Swedish University of Agricultural Sciences for hosting parts of the experiments. C.B.H was funded by an internationalisation grant from the Carlsberg Research Grant Foundation at the time of writing (grant no. CF18-0809). We would like to thank Jerome Guerrand for aid in in vitro laboratory techniques, the Norwegian Forest Seed Center for provision of seeds, Hedda Weitz and Tatiana A. Semenova-Nelson and Taina Pennanen for provision of fungal cultures. We would like to thank Marc-AndrĂŠ Selosse, Peter Kennedy and four anonymous referees for valuable comments to an earlier version of this manuscript.Peer reviewedPublisher PD

    Mycena species can be opportunist-generalist plant root invaders

    Get PDF
    ACKNOWLEDGEMENTS We thank Karl-Henrik Larsson and Arne Aronsen for provisions of specimens from the Natural History Museum of Oslo and help with the identification of field specimens from Svalbard. We further thank Cecilie Mathiesen and Mikayla Jacobs for technical assistance in the laboratory, Brendan J. Furneaux for valuable input to the R script, and the curators of H, TUR, and OULU. The Mycena ITS sequences originating from the specimens deposited in H, TUR, and OULU were produced as part of the Finnish Barcode of Life Project (FinBOL) funded by the Ministry of Environment, Finland (YM23/5512/2013), Otto A Malm's Donationsfond, and the Kone Foundation. We thank the European Commission (grant no. 658849) and the Carlsberg Foundation (grant no. CF18-0809) for grants to C.B. Harder that made this research possible. C.B. Harder was financed by a grant from the Danish Independent Research Fund DFF/FNU 2032-00064B (SapMyc) at the time of writing. Research Funding Carlsbergfondet. Grant Number: CF18-0809 Danish Independent Research Fund. Grant Number: 2032-00064B European Commission. Grant Number: 658849 Ministry of Environment, Finland. Grant Number: YM23/5512/2013Peer reviewedPublisher PD

    Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations.

    Get PDF
    Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed

    Pyrosequencing and genetic diversity of microeukaryotes

    No full text

    Data for platform, bases and reads for sequencing efforts.

    No full text
    Data for platform, bases and reads for sequencing efforts.</p

    Congeneric temperate orchids recruit similar—yet differentially abundant—endophytic bacterial communities that are uncoupled from soil, but linked to host phenology and population size

    No full text
    Premise: Besides the beneficial plant-fungus symbiosis in mycorrhizal plants, bacteria also enhance plant fitness via tripartite interactions. While bacterial associations are presumably just as important for the obligate mycorrhizal family Orchidaceae, little is known about orchid associating bacteria (OAB). Methods: We examined the OAB communities of two, congeneric, terrestrial orchids, Platanthera cooperi and Platanthera praeclara, which represent widely disparate North American ecosystems. We tested whether they recruit distinct OAB communities, and whether variability in OAB communities can be linked to phenology, population size, or habitat soil. Genomic DNAs from roots of seedling, vegetative, and reproductive plants and from soil were subjected to Illumina sequencing of V4 and V5 regions of the 16S rRNA gene. Results: We obtained 809 OAB Zero-radius Operational Taxonomic Units (ZOTUs). Despite an overlap of 209 ZOTUs that accounted for >75% relative abundances of their respective OAB communities, the overall community structures of the two orchids were distinct. Within each orchid, distinctions were detected in the OAB communities of large and small populations and the three phenological stages. The OAB ZOTUs were either absent or present with low abundances in soil associated with both orchids. Conclusions: The two orchids exhibited preferential recruitment of known growth-promoting OAB communities from soil. Their OAB communities also showed considerable overlap despite the large environmental and geographical separation of the two host taxa. Our results lend further support to the emerging evidence that not only the fungi, but root-associated bacteria also have functional importance for orchid ecology
    corecore