134 research outputs found

    Lagrangian tracer homogenization and dispersion in a simplified atmospheric GCM

    Get PDF
    Lagrangian transport in the atmosphere is numerically studied by using a simplified general circulation model (SGCM) with Newtonian cooling and Rayleigh friction. Long-term Lagrangian behaviour is analyzed by determining hemispheric and global homogenization times and by studying the time evolution of tracer distributions. At short times, the properties of absolute dispersion are considered. The tracer dynamics reveals the presence of transport barriers associated with slow inter-hemispheric and troposphere-stratosphere exchanges, and with a slow crossing of the boundary between the Ferrel and Hadley cells

    Precision Measurements of Stretching and Compression in Fluid Mixing

    Full text link
    The mixing of an impurity into a flowing fluid is an important process in many areas of science, including geophysical processes, chemical reactors, and microfluidic devices. In some cases, for example periodic flows, the concepts of nonlinear dynamics provide a deep theoretical basis for understanding mixing. Unfortunately, the building blocks of this theory, i.e. the fixed points and invariant manifolds of the associated Poincare map, have remained inaccessible to direct experimental study, thus limiting the insight that could be obtained. Using precision measurements of tracer particle trajectories in a two-dimensional fluid flow producing chaotic mixing, we directly measure the time-dependent stretching and compression fields. These quantities, previously available only numerically, attain local maxima along lines coinciding with the stable and unstable manifolds, thus revealing the dynamical structures that control mixing. Contours or level sets of a passive impurity field are found to be aligned parallel to the lines of large compression (unstable manifolds) at each instant. This connection appears to persist as the onset of turbulence is approached.Comment: 5 pages, 5 figure

    MODIS time series contribution for the estimation of nutritional properties of alpine grassland

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in European Journal of Remote Sensing on 17th February 2017, available online: https://doi.org/10.5721/EuJRS20164936Despite the Normalised Difference Vegetation Index (NDVI) has been used to make predictions on forage quality, its relationship with bromatological field data has not been widely tested. This relationship was investigated in alpine grasslands of the Gran Paradiso National Park (Italian Alps). Predictive models were built using remotely sensed derived variables (NDVI and phenological information computed from MODIS) in combination with geo-morphometric data as predictors of measured biomass, crude protein, fibre and fibre digestibility, obtained from 142 grass samples collected within 19 experimental plots every two weeks during the whole 2012 growing season. The models were both cross-validated and validated on an independent dataset (112 samples collected during 2013). A good predictability ability was found for the estimation of most of the bromatological measures, with a considerable relative importance of remotely sensed derived predictors; instead, a direct use of NDVI values as a proxy of bromatological variables appeared not to be supported

    Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies.

    Get PDF
    Misfolded α-synuclein is a major component of Lewy bodies, which are a hallmark of Parkinson's disease (PD). A large body of evidence shows that α-synuclein can aggregate into amyloid fibrils, but the relationship between α-synuclein self-assembly and Lewy body formation remains unclear. Here, we show, both in vitro and in a Caenorhabditis elegans model of PD, that α-synuclein undergoes liquid‒liquid phase separation by forming a liquid droplet state, which converts into an amyloid-rich hydrogel with Lewy-body-like properties. This maturation process towards the amyloid state is delayed in the presence of model synaptic vesicles in vitro. Taken together, these results suggest that the formation of Lewy bodies may be linked to the arrested maturation of α-synuclein condensates in the presence of lipids and other cellular components.Wellcome Trust (065807/Z/01/Z) (203249/Z/16/Z). Also, the UK Medical Research Council (MRC) (MR/K02292X/1), Alzheimer Research UK (ARUK) (ARUK-PG013-14), Michael J Fox Foundation (16238) and from Infinitus China Ltd

    HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR - Description, model computational performance and basic validation

    Get PDF
    A new global high-resolution coupled climate model, EC-Earth3P-HR has been developed by the EC-Earth consortium, with a resolution of approximately 40 km for the atmosphere and 0.25° for the ocean, alongside with a standard-resolution version of the model, EC-Earth3P (80 km atmosphere, 1.0 ° ocean). The model forcing and simulations follow the High Resolution Model Intercomparison Project (HighResMIP) protocol. According to this protocol, all simulations are made with both high and standard resolutions. The model has been optimized with respect to scalability, performance, data storage and post-processing. In accordance with the HighResMIP protocol, no specific tuning for the high-resolution version has been applied. Increasing horizontal resolution does not result in a general reduction of biases and overall improvement of the variability, and deteriorating impacts can be detected for specific regions and phenomena such as some Euro-Atlantic weather regimes, whereas others such as the El Niño-Southern Oscillation show a clear improvement in their spatial structure. The omission of specific tuning might be responsible for this. The shortness of the spin-up, as prescribed by the HighResMIP protocol, prevented the model from reaching equilibrium. The trend in the control and historical simulations, however, appeared to be similar, resulting in a warming trend, obtained by subtracting the control from the historical simulation, close to the observational one

    A multidisciplinary approach to estimating wolf population size for long-term conservation

    Get PDF
    The wolf (Canis lupus) is among the most controversial of wildlife species. Abundance estimates are required to inform public debate and policy decisions, but obtaining them at biologically relevant scales is challenging. We developed a system for comprehensive population estimation across the Italian alpine region (100,000 km2), involving 1513 trained operators representing 160 institutions. This extensive network allowed for coordinated genetic sample collection and landscape-level spatial capture–recapture analyses that transcended administrative boundaries to produce the first estimates of key parameters for wolf population status assessment. Wolf abundance was estimated at 952 individuals (95% credible interval 816–1120) and 135 reproductive units (i.e., packs) (95% credible interval 112–165). We also estimated that mature individuals accounted for 33–45% of the entire population. The monitoring effort was spatially estimated thereby overcoming an important limitation of citizen science data. This is an important approach for promoting wolf–human coexistence based on wolf abundance monitoring and an endorsement of large-scale harmonized conservation practices

    Patchiness and Demographic Noise in Three Ecological Examples

    Full text link
    Understanding the causes and effects of spatial aggregation is one of the most fundamental problems in ecology. Aggregation is an emergent phenomenon arising from the interactions between the individuals of the population, able to sense only -at most- local densities of their cohorts. Thus, taking into account the individual-level interactions and fluctuations is essential to reach a correct description of the population. Classic deterministic equations are suitable to describe some aspects of the population, but leave out features related to the stochasticity inherent to the discreteness of the individuals. Stochastic equations for the population do account for these fluctuation-generated effects by means of demographic noise terms but, owing to their complexity, they can be difficult (or, at times, impossible) to deal with. Even when they can be written in a simple form, they are still difficult to numerically integrate due to the presence of the "square-root" intrinsic noise. In this paper, we discuss a simple way to add the effect of demographic stochasticity to three classic, deterministic ecological examples where aggregation plays an important role. We study the resulting equations using a recently-introduced integration scheme especially devised to integrate numerically stochastic equations with demographic noise. Aimed at scrutinizing the ability of these stochastic examples to show aggregation, we find that the three systems not only show patchy configurations, but also undergo a phase transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy

    Palaeozoic-Recent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwesternmost corner of the Arabian continent

    Get PDF
    <p>We have carried out a several-year-long study of the Amanos Mountains, on the basis of which we present new sedimentary and structural evidence, which we combine with existing data, to produce the first comprehensive synthesis in the regional geological setting. The ca. N-S-trending Amanos Mountains are located at the northwesternmost edge of the Arabian plate, near the intersection of the African and Eurasian plates. Mixed siliciclastic-carbonate sediments accumulated on the north-Gondwana margin during the Palaeozoic. Triassic rift-related sedimentation was followed by platform carbonate deposition during Jurassic-Cretaceous. Late Cretaceous was characterised by platform collapse and southward emplacement of melanges and a supra-subduction zone ophiolite. Latest Cretaceous transgressive shallow-water carbonates gave way to deeper-water deposits during Palaeocene-Eocene. Eocene southward compression, reflecting initial collision, resulted in open folding, reverse faulting and duplexing. Fluvial, lagoonal and shallow-marine carbonates accumulated during Late Oligocene(?)-Early Miocene, associated with basaltic magmatism. Intensifying collision during Mid-Miocene initiated a foreland basin that then infilled with deep-water siliciclastic gravity flows. Late Miocene-Early Pliocene compression created mountain-sized folds and thrusts, verging E in the north but SE in the south. The resulting surface uplift triggered deposition of huge alluvial outwash fans in the west. Smaller alluvial fans formed along both mountain flanks during the Pleistocene after major surface uplift ended. Pliocene-Pleistocene alluvium was tilted towards the mountain front in the west. Strike-slip/transtension along the East Anatolian Transform Fault and localised sub-horizontal Quaternary basaltic volcanism in the region reflect regional transtension during Late Pliocene-Pleistocene (<4 Ma).</p
    • 

    corecore