2,498 research outputs found

    A Chandra study of particle acceleration in the multiple hotspots of nearby radio galaxies

    Full text link
    We present Chandra observations of a small sample of nearby classical double radio galaxies which have more than one radio hotspot in at least one of their lobes. The X-ray emission from the hotspots of these comparatively low-power objects is expected to be synchrotron in origin, and therefore to provide information about the locations of high-energy particle acceleration. In some models of the relationship between the jet and hotspot the hotspots that are not the current jet termination point should be detached from the energy supply from the active nucleus and therefore not capable of accelerating particles to high energies. We find that in fact some secondary hotspots are X-ray sources, and thus probably locations for high-energy particle acceleration after the initial jet termination shock. In detail, though, we show that the spatial structures seen in X-ray are not consistent with naive expectations from a simple shock model: the current locations of the acceleration of the highest-energy observable particles in powerful radio galaxies need not be coincident with the peaks of radio or even optical emission.Comment: Accepted for ApJ. 33 pages, 8 figures inc. 2 in colo

    Internal entrainment and the origin of jet-related broad-band emission in Centaurus A

    Get PDF
    Date of Acceptance: 14/11/2014The dimensions of Fanaroff-Riley class I jets and the stellar densities at galactic centres imply that there will be numerous interactions between the jet and stellar winds. These may give rise to the observed diffuse and 'knotty' structure of the jets in the X-ray, and can also mass load the jets. We performed modelling of internal entrainment from stars intercepted by Centaurus A's jet, using stellar evolution- and wind codes. From photometry and a codesynthesized population of 12 Gyr (Z = 0.004), 3 Gyr (Z = 0.008) and 0-60 Myr (Z = 0.02) stars, appropriate for the parent elliptical NGC 5128, the total number of stars in the jet is ∼8 × 108. Our model is energetically capable of producing the observed X-ray emission, even without young stars. We also reproduce the radio through X-ray spectrum of the jet, albeit in a downstream region with distinctly fewer young stars, and recover the mean X-ray spectral index.We derive an internal entrainment rate of ∼2.3 × 10-3M yr-1 which implies substantial jet deceleration. Our absolute nucleosynthetic yields for the Asymptotic Giant Branch stellar population in the jet show the highest amounts for 4He, 16O, 12C, 14N and 20Ne. If some of the events at ≥55 EeV detected by the Pierre Auger Observatory originate from internal entrainment in Centaurus A, we predict that their composition will be largely intermediate-mass nuclei with 16O, 12C and 14N the key isotopes.Peer reviewe

    SZ effect from radio-galaxy lobes: astrophysical and cosmological relevance

    Full text link
    We derive the SZ effect arising in radio-galaxy lobes that are filled with high-energy, non-thermal electrons. We provide here quantitative estimates for SZ effect expected from the radio galaxy lobes by normalizing it to the Inverse-Compton light, observed in the X-ray band, as produced by the extrapolation to low energies of the radio emitting electron spectrum in these radio lobes. We compute the spectral and spatial characteristics of the SZ effect associated to the radio lobes of two distant radio galaxies (3C294 and 3C432) recently observed by Chandra, and we further discuss its detectability with the next generation microwave and sub-mm experiments with arcsec and ∼μ\sim \muK sensitivity. We finally highlight the potential use of the SZE from radio-galaxy lobes in the astrophysical and cosmological context.Comment: 8 pages, 5 figures, MNRAS in pres

    Probing gaseous halos of galaxies with radio jets

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOContext. Gaseous halos play a key role in understanding inflow, feedback, and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains, and hydrostatic halos at certain galaxy masses. Since luminosities of radio AGN are sensitive to halo densities, any significant transition would be expected to show up in the radio luminosities of large samples of galaxies. The LOw Frequency ARray (LOFAR) Two-Metre Sky Survey (LoTSS) has identified a galaxy stellar mass scale, 10 11 M ⊙, above which the radio luminosities increase disproportionately. Aims. We investigate if radio luminosities of galaxies, especially the marked rise at galaxy masses around 10 11 M ⊙, can be explained with standard assumptions regarding jet powers, scaling between black hole mass and galaxy mass, and gaseous halos. Methods. Based on observational data and theoretical constraints, we developed models for the radio luminosity of radio AGN in halos under infall, galactic wind, and hydrostatic conditions. We compared these models to LoTSS data for a large sample of galaxies in the mass range between 10 8.5 M ⊙ and 10 12 M ⊙. Results. Under the assumption that the same characteristic upper limit to jet powers known from high galaxy masses holds at all masses, we find the maximum radio luminosities for the hydrostatic gas halos to lie close to the upper envelope of the distribution of the LOFAR data. The marked rise in radio luminosity at 10 11 M ⊙ is matched in our model and is related to a significant change in halo gas density around this galaxy mass, which is a consequence of lower cooling rates at a higher virial temperature. Wind and infall models overpredict the radio luminosities for small galaxy masses and have no particular steepening of the run of the radio luminosities predicted at any galaxy mass. Conclusions. Radio AGN could have the same characteristic Eddington-scaled upper limit to jet powers in galaxies of all masses in the sample if the galaxies have hydrostatic gas halos in phases when radio AGN are active. We find no evidence of a change of the type of galaxy halo with the galaxy mass. Galactic winds and quasi-spherical cosmological inflow phases cannot frequently occur at the same time as powerful jet episodes unless the jet properties in these phases are significantly different from what we assumed in our model.Peer reviewedFinal Accepted Versio

    The distribution of local star formation activity as a function of galaxy stellar mass, environment and morphology

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present a detailed inventory of star formation in the local Universe, dissecting the cosmic star formation budget as a function of key variables that influence the star formation rate (SFR) of galaxies: stellar mass, local environment and morphology. We use a large homogeneous dataset from the SDSS to first study how the star-formation budget in galaxies with stellar masses greater than log(M/MSun) = 10 splits as a function of each parameter separately. We then explore how the budget behaves as a simultaneous function of these three parameters. We show that the bulk of the star formation at z < 0.075 (~65 per cent) takes place in spiral galaxies, that reside in the field, and have stellar masses between 10 < log(M/MSun) < 10.9. The ratio of the cosmic star formation budget hosted by galaxies in the field, groups and clusters is 21:3:1. Morphological ellipticals are minority contributors to local star formation. They make a measurable contribution to the star formation budget only at intermediate to high stellar masses, 10.3 < log(M/MSun) < 11.2 (where they begin to dominate by number), and typically in the field, where they contribute up to ~13 per cent of the total star-formation budget. This inventory of local star formation serves as a z~0 baseline which, when combined with similar work at high redshift, will enable us to understand the changes in SFR that have occurred over cosmic time and offers a strong constraint on models of galaxy formation.Peer reviewe

    A Chandra Study of the Lobe/ISM Interactions Around the Inner Radio Lobes of Centaurus A: Constraints on the Temperature Structure and Transport Processes

    Full text link
    We present results from deeper {\em Chandra} observations of the southwest radio lobe of Centaurus A, first described by Kraft et al. (2003). We find that the sharp X-ray surface brightness discontinuity extends around ∼\sim75% of the periphery of the radio lobe, and detect significant temperature jumps in the brightest regions of this discontinuity nearest to the nucleus. This demonstrates that this discontinuity is indeed a strong shock which is the result of an overpressure which has built up in the entire lobe over time. Additionally, we demonstrate that if the mean free path for ions to transfer energy and momentum to the electrons behind the shock is as large as the Spitzer value, the electron and proton temperatures will not have equilibrated along the SW boundary of the radio lobe where the shock is strongest. Thus the proton temperature of the shocked gas could be considerably larger than the observed electron temperature, and the total energy of the outburst correspondingly larger as well. We investigate this using a simple one-dimensional shock model for a two-fluid (proton/electron) plasma. We find that for the thermodynamic parameters of the Cen A shock the electron temperature rises rapidly from ∼\sim0.29 keV (the temperature of the ambient ISM) to ∼\sim3.5 keV at which point heating from the protons is balanced by adiabatic losses. The proton and electron temperatures do not equilibrate in a timescale less than the age of the lobe. We note that the measured electron temperature of similar features in other nearby powerful radio galaxies in poor environments may considerably underestimate the strength and velocity of the shock.Comment: 29 pages, 9 figures, 2 tables - accepted for publication in the Astrophysical Journa

    Autonomous and controlled motivational regulations for multiple health related behaviors: between- and within-participants analyses

    Get PDF
    Self-determination theory has been applied to the prediction of a number of health-related behaviors with self-determined or autonomous forms of motivation generally more effective in predicting health behavior than non-self-determined or controlled forms. Research has been confined to examining the motivational predictors in single health behaviors rather than comparing effects across multiple behaviors. The present study addressed this gap in the literature by testing the relative contribution of autonomous and controlling motivation to the prediction of a large number of health-related behaviors, and examining individual differences in self-determined motivation as a moderator of the effects of autonomous and controlling motivation on health behavior. Participants were undergraduate students (N = 140) who completed measures of autonomous and controlled motivational regulations and behavioral intention for 20 health-related behaviors at an initial occasion with follow-up behavioral measures taken four weeks later. Path analysis was used to test a process model for each behavior in which motivational regulations predicted behavior mediated by intentions. Some minor idiosyncratic findings aside, between-participants analyses revealed significant effects for autonomous motivational regulations on intentions and behavior across the 20 behaviors. Effects for controlled motivation on intentions and behavior were relatively modest by comparison. Intentions mediated the effect of autonomous motivation on behavior. Within-participants analyses were used to segregate the sample into individuals who based their intentions on autonomous motivation (autonomy-oriented) and controlled motivation (control-oriented). Replicating the between-participants path analyses for the process model in the autonomy- and control-oriented samples did not alter the relative effects of the motivational orientations on intention and behavior. Results provide evidence for consistent effects of autonomous motivation on intentions and behavior across multiple health-related behaviors with little evidence of moderation by individual differences. Findings have implications for the generalizability of proposed effects in self-determination theory and intentions as a mediator of distal motivational factors on health-related behavior

    The Dynamics of Radio Galaxies and Double-Double Radio Galaxies

    Full text link
    Relativistic and magnetised plasma ejected by radio loud AGNs through jets form the diffuse lobes of radio galaxies. The radiating particles (electron/electron-positron) in lobes emit in radio via the synchrotron process and X-ray via inverse-Compton scattering of cosmic microwave background photons. The thermal environment around radio galaxies emits X-rays via the thermal bremsstrahlung process. By combining information from these processes we can measure physical conditions in and around the radio lobes and thus study the dynamics of radio galaxies, including double-double radio galaxies.Comment: 11 pages, 4 figures, Diffuse Radio Plasma Conference proceedings (held in Raman Research Institute, Bangalore, India

    The Hard X-Ray View of Reflection, Absorption, and the Disk-Jet Connection in the Radio-Loud AGN 3C 33

    Get PDF
    We present results from Suzaku and Swift observations of the nearby radio galaxy 3C 33, and investigate the nature of absorption, reflection, and jet production in this source. We model the 0.5-100 keV nuclear continuum with a power law that is transmitted either through one or more layers of pc-scale neutral material, or through a modestly ionized pc-scale obscurer. The standard signatures of reflection from a neutral accretion disk are absent in 3C 33: there is no evidence of a relativistically blurred Fe Kα\alpha emission line, and no Compton reflection hump above 10 keV. We find the upper limit to the neutral reflection fraction is R<0.41 for an e-folding energy of 1 GeV. We observe a narrow, neutral Fe Kα\alpha line, which is likely to originate at least 2,000 R_s from the black hole. We show that the weakness of reflection features in 3C 33 is consistent with two interpretations: either the inner accretion flow is highly ionized, or the black-hole spin configuration is retrograde with respect to the accreting material.Comment: 12 pages, 11 figures, 4 tables. Accepted for publication in Ap

    Sub-Arcsecond Imaging of 3C123:108-GHz Continuum Observations of the Radio Hotspots

    Get PDF
    We present the results of sub-arcsecond 108 GHz continuum interferometric observations toward the radio luminous galaxy 3C123. Using multi-array observations, we utilize the high u,v dynamic range of the BIMA millimeter array to sample fully spatial scales ranging from 0.5" to 50". This allows us to make one-to-one comparisons of millimeter-wavelength emission in the radio lobes and hotspots to VLA centimeter observations at 1.4, 4.9, 8.4, and 15 GHz. At 108 GHz, the bright, eastern double hotspot in the southern lobe is resolved. This is only the second time that a multiple hotspot region has been resolved in the millimeter regime. We model the synchrotron spectra of the hotspots and radio lobes using simple broken power-law models with high energy cutoffs, and discuss the hotspot spectra and their implications for models of multiple hotspot formation.Comment: 16 pages, 3 Figures, ApJ Accepte
    • …
    corecore