948 research outputs found

    Small Engine Component Technology (SECT) studies

    Get PDF
    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented

    On the Convergence of the Holistic Analysis for EDF Distributed Systems

    Get PDF
    Dynamic scheduling techniques, and EDF (Earliest Deadline First) in particular, have demonstrated their ability to increase the schedulability of real time systems compared to fixed-priority scheduling. In distributed systems, the scheduling policies of the processing nodes tend to be the same as in stand-alone systems and, although few EDF networks exist, it is foreseen that dynamic scheduling will gradually develop into real-time networks. There are some response time analysis techniques for EDF scheduled distributed systems, mostly derived from the holistic analysis developed by Spuri. The convergence of the holistic analysis in context of EDF distributed systems with shared resources had not been studied until now. There is a circular dependency between tasks’ release jitter values, response times and preemption level ceilings of shared resources. In this paper we present an extension of Spuri’s algorithm and we demonstrate that its iterative formulas are non-decreasing, even in the presence of shared resources. This result enables us to assert that the new algorithm converges towards a solution for the response times of the tasks and messages in a distributed system

    Molecular Electroporation and the Transduction of Oligoarginines

    Full text link
    Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of 180 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40--60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.Comment: 15 pages, 5 figure
    • …
    corecore