178 research outputs found

    Detailing the impact of the Storegga Tsunami at Montrose, Scotland

    Get PDF
    The Storegga tsunami, dated in Norway to 815030cal.yearsBP,hitmanycountriesborderingtheNorthSea.Run−upsof>30moccurredand1000sofkilometresofcoastwereimpacted.Whilstrecentmodellingsuccessfullygeneratedatsunamiwavetrain,thewaveheightsandvelocities,itunder−estimatedwaverun−ups.WorkpresentedhereusedluminescencetodirectlydatetheStoreggatsunamidepositsatthetypesiteofMaryton,AberdeenshireinScotland.Italsoundertooksedimentologicalcharacterizationtoestablishprovenance,andnumberandrelativepowerofthetsunamiwaves.Tsunamimodelrefinementusedthistobetterunderstandcoastalinundation.LuminescenceagessuccessfullydateScottishStoreggatsunamidepositsto810030 cal. years BP, hit many countries bordering the North Sea. Run-ups of >30 m occurred and 1000s of kilometres of coast were impacted. Whilst recent modelling successfully generated a tsunami wave train, the wave heights and velocities, it under-estimated wave run-ups. Work presented here used luminescence to directly date the Storegga tsunami deposits at the type site of Maryton, Aberdeenshire in Scotland. It also undertook sedimentological characterization to establish provenance, and number and relative power of the tsunami waves. Tsunami model refinement used this to better understand coastal inundation. Luminescence ages successfully date Scottish Storegga tsunami deposits to 8100250 years. Sedimentology showed that at Montrose, three tsunami waves came from the northeast or east, over-ran pre-existing marine sands and weathered igneous bedrock on the coastal plain. Incorporation of an inundation model predicts well a tsunami impacting on the Montrose Basin in terms of replicate direction and sediment size. However, under-estimation of run-up persisted requiring further consideration of palaeotopography and palaeo-near-shore bathymetry for it to agree with sedimentary evidence. Future model evolution incorporating this will be better able to inform on the hazard risk and potential impacts for future high-magnitude submarine generated tsunami events

    30 years in the life of an active submarine volcano: A time-lapse bathymetry study of the Kick-‘em-Jenny Volcano, Lesser Antilles

    Get PDF
    Effective monitoring is an essential part of identifying and mitigating volcanic hazards. In the submarine environment this is more difficult than onshore because observations are typically limited to land-based seismic networks and infrequent shipboard surveys. Since the first recorded eruption in 1939, the Kick-‘em-Jenny (KeJ) volcano, located 8km off northern Grenada, has been the source of 13 episodes of T-phase signals. These distinctive seismic signals, often coincident with heightened body-wave seismicity, are interpreted as extrusive eruptions. They have occurred with a recurrence interval of around a decade, yet direct confirmation of volcanism has been rare. By conducting new bathymetric surveys in 2016 and 2017 and reprocessing 4 legacy datasets spanning 30 years we present a clearer picture of the development of KeJ through time. Processed grids with a cell size of 5m and vertical precision on the order of 1-4m allow us to correlate T-phase episodes with morphological changes at the volcano's edifice. In the time-period of observation 7.09x106 m3 of material has been added through constructive volcanism – yet 5 times this amount has been lost through landslides. Limited recent magma production suggests that KeJ may be susceptible to larger eruptions with longer repeat times than have occurred during the study interval, behavior more similar to sub-aerial volcanism in the arc than previously thought. T-phase signals at KeJ have a varied origin and are unlikely to be solely the result of extrusive submarine eruptions. Our results confirm the value of repeat swath bathymetry surveys in assessing submarine volcanic hazards

    Coastal inundation multi-hazard analysis for a construction site in Malaysia

    Get PDF
    -Establishment of new manufacturing sites in high-technology industries requires considerable investments. These investments need to be safeguarded against the impacts of natural hazards. The March 2011 Tohoku earthquake and tsunami highlighted the tremendous impacts of cascading hazards and emphasised the importance of hazard and risk assessment in the early stages of site selection. A screening study of coastal inundation due to multiple hazards was performed for a potential manufacturing plant at the Batu Kawan Industrial Park in Penang state, Malaysia. The analysis accounted for river floods, rainfall and flash floods, cyclones, tides, storm surges, sea-level rise, and tsunamis. Natural hazards not related to inundation, such as earthquakes and volcanoes, were also briefly evaluated. Where relevant data were available, the hazards were assessed quantitatively. Otherwise, they were assessed qualitatively. The effects of climate changes were discussed for temperature and rainfall and for sea-level rise. The proposed development site elevation of 2.60 m LSD (Land Survey Data Level; 30 cm above mean sea level) will probably be reached by both the 100-year flood and the 100-year combined tide and storm surge. With a well-engineered drainage system the flooding risk is low, but in this low-lying area coincidence with a storm surge or high tide will aggravate the flooding situation. Sea-level rise over the next 100 years for the region is assumed to be less than 0.55 m. The relative levels for the other hazards were found to be lower. There is obviously significant uncertainty associated with the estimated hazard at the return periods considered for design. A further comparison of the various hazard levels is not meaningful without considering also the consequences (i.e. the risk)
    • …
    corecore