3,281 research outputs found

    The Spatial Frequency Content of Urban and Indoor Environments as a Potential Risk Factor for Myopia Development

    Get PDF
    To examine the hypothesis that the spatial frequency spectra of urban and indoor environments differ from the natural environment in ways that may promote the development of myopia. Methods: A total of 814 images were analyzed from three datasets; University of California Berkeley (UCB), University of Texas (UT), and Botswana (UPenn). Images were processed in Matlab (Mathworks Inc) to map the camera color characteristics to human cone sensitivities. From the photopic luminance images generated, two-dimensional spatial frequency (SF) spectra were calculated and converted to one-dimensional spectra by rotational averaging. The spatial filtering profile of a 0.4 Bangerter foil, which has been shown to induce myopia experimentally, was also determined. Results: The SF slope for natural scenes followed the recognized 1/fα relationship with mean slopes of -1.08, -0.90, and -1.04 for the UCB, UT and UPenn image sets, respectively. Indoor scenes had a significantly steeper slope (-1.48, UCB; -1.52, UT; P \u3c 0.0001). Urban environments showed an intermediate slope (-1.29, UCB; -1.22, UT) that was significantly different from the slopes derived from the natural scenes (P \u3c 0.0001). The change in SF content between natural outdoor scenes and indoors was comparable to that induced by a 0.4 Bangerter foil, which reduced the SF slope of a natural scene from -0.88 to -1.47. Conclusions: Compared to natural outdoor images, man-made outdoor and indoor environments have spatial frequency characteristics similar to those known to induce form-deprivation myopia in animal models. The spatial properties of the man-made environment may be one of the missing drivers of the human myopia epidemic

    Multiwavelength study of RX J2015.6+3711: a magnetic cataclysmic variable with a 2-hr spin period

    Get PDF
    The X-ray source RX J2015.6+3711 was discovered by ROSAT in 1996 and recently proposed to be a cataclysmic variable (CV). Here we report on an XMM-Newton observation of RX J2015.6+3711 performed in 2014, where we detected a coherent X-ray modulation at a period of 7196+/-11 s, and discovered other significant (>6sigma) small-amplitude periodicities which we interpret as the CV spin period and the sidebands of a possible ~12 hr periodicity, respectively. The 0.3-10 keV spectrum can be described by a power law (Gamma = 1.15+/-0.04) with a complex absorption pattern, a broad emission feature at 6.60+/-0.01 keV, and an unabsorbed flux of (3.16+/-0.05)x10^{-12} erg/s/cm^2. We observed a significant spectral variability along the spin phase, which can be ascribed mainly to changes in the density of a partial absorber and the power law normalization. Archival X-ray observations carried out by the Chandra satellite, and two simultaneous X-ray and UV/optical pointings with Swift, revealed a gradual fading of the source in the soft X-rays over the last 13 years, and a rather stable X-ray-to-optical flux ratio (F_X/F_V ~1.4-1.7). Based on all these properties, we identify this source with a magnetic CV, most probably of the intermediate polar type. The 2 hr spin period makes RX J2015.6+3711 the second slowest rotator of the class, after RX J0524+4244 ("Paloma", P_spin~2.3 hr). Although we cannot unambiguously establish the true orbital period with these observations, RX J2015.6+3711 appears to be a key system in the evolution of magnetic CVs.Comment: 11 pages, 8 figures, accepted for publication on MNRA

    SenseCluster for exploring large data repositories

    Get PDF
    Exploring and making sense of large data repositories has become a daunting task. This is especially the case for end users who often have limited access to the data due to the complexity of the retrieval process and limited availability of IT support for developing custom queries and reports based on the data. Consequently, traditional interfaces are no longer meeting these requirements. Instead, novel interfaces are required to fully support the sense making process. In this paper, we followed a design science approach and introduced a query clustering system (Sense Cluster) that could serve as a quick exploration tool for making better sense of large data repositories. We also present an evaluation of the effectiveness of our artifact using cognitive walkthroughs

    Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    Full text link
    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40'' in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5'' from the point source, a distance consistent with the sizes of resolved wind termination shocks around many Vela-like pulsars. Finally, we argue based on synchrotron lifetimes in the estimated nebular magnetic field that DA 495 represents a rare pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind, and that this high magnetization factor may account for the nebula's low luminosity.Comment: 26 pages, 5 figures, AASTeX preprint style. Accepted for publication in The Astrophysical Journa

    Detection of thermal X-ray emission in the halo of the plerionic supernova remnant G21.5-0.9

    Full text link
    The detection of a soft thermal X-ray component in the spectrum of a bright knot in the halo of the plerion G21.5-0.9 is reported. Using a collisional ionization equilibrium model for an hot optically thin plasma, a temperature kT=0.120.24kT=0.12-0.24 kev, a mass of 0.3--1.0 M_\odot and a density of 1.6-6 cm3^{-3} is derived. The spectral analysis suggests a possible overabundance of Silicon with respect to the solar value in the knot; if this will be confirmed this object may be a clump of shocked ejecta.Comment: 6 pages, 4 figures, Adv.Sp.Res. in press, proc of COSPAR Session E1.4 "Young Neutron Stars and Supernova Remnants", http://www.astropa.unipa.it/Library/OAPA_preprints/ns.ps.g

    Wave Function Microscopy of Quasibound Atomic States

    Get PDF
    In the 1980s Demkov, Kondratovich, and Ostrovsky and Kondratovich and Ostrovsky proposed an experiment based on the projection of slow electrons emitted by a photoionized atom onto a position-sensitive detector. In the case of resonant excitation, they predicted that the spatial electron distribution on the detector should represent nothing else but a magnified image of the projection of a quasibound electronic state. By exciting lithium atoms in the presence of a static electric field, we present in this Letter the first experimental photoionization wave function microscopy images where signatures of quasibound states are evident. Characteristic resonant features, such as (i) the abrupt change of the number of wave function nodes across a resonance and (ii) the broadening of the outer ring of the image (associated with tunneling ionization), are observed and interpreted via wave packet propagation simulations and recently proposed resonance tunneling mechanisms. The electron spatial distribution measured by our microscope is a direct macroscopic image of the projection of the microscopic squared modulus of the electron wave that is quasibound to the atom and constitutes the first experimental realization of the experiment proposed 30 years ago

    The Deepest Radio Study of the Pulsar Wind Nebula G21.5-0.9: Still No Evidence for the Supernova Shell

    Full text link
    We report on sensitive new 1.4-GHz VLA radio observations of the pulsar wind nebula G21.5-0.9, powered by PSR J1833-1034, and its environs. Our observations were targeted at searching for the radio counterpart of the shell-like structure seen surrounding the pulsar wind nebula in X-rays. Some such radio emission might be expected as the ejecta from the <~ 1000 yr old supernova expand and interact with the surrounding medium. We find, however, no radio emission from the shell, and can place a conservative 3-sigma upper limit on its 1-GHz surface brightness of 7 x 10^-22 W/m^2/Hz/sr, comparable to the lowest limits obtained for radio emission from shells around other pulsar-wind nebulae. Our widefield radio image also shows the presence of two extended objects of low-surface brightness. We re-examine previous 327-MHz images, on which both the new objects are visible. We identify the first, G21.64-0.84, as a new shell-type supernova remnant, with a diameter of ~13' and an unusual double-shell structure. The second, G21.45-0.59, ~1' in diameter, is likely an HII region.Comment: 8 Pages, submitted to MNRA
    corecore