20 research outputs found

    The predictive value of depression in the years after heart transplantation for mortality during long-term follow-up

    Get PDF
    Objective Current understanding of the prognostic impact of depression on mortality after heart transplantation (HTx) is limited. We examined whether depression after HTx is a predictor of mortality during extended follow-up. Subsequently, we explored whether different symptom dimensions of depression could be identified and whether they were differentially associated with mortality. Methods Survival analyses were performed in a sample of 141 HTx recipients assessed for depression, measured by self-report of depressive symptoms (Beck Depression Inventory – version 1A [BDI-1A]), at median 5.0 years after HTx, and followed thereafter for survival status for up to 18.6 years. We used uni- and multivariate Cox proportional hazard models to examine the association of clinically significant depression (BDI-1A total score ≥10), as well as the cognitive-affective and the somatic subscales of the BDI-1A (resulting from principal component analysis) with mortality. In the multivariate analyses, we adjusted for relevant sociodemographic and clinical variables. Results Clinically significant depression was a significant predictor of mortality (hazard ratio = 2.088; 95% confidence interval = 1.366–3.192; p = .001). Clinically significant depression also was an independent predictor of mortality in the multivariate analysis (hazard ratio = 1.982; 95% confidence interval = 1.220–3.217; p = .006). The somatic subscale, but not the cognitive-affective subscale, was significantly associated with increased mortality in univariate analyses, whereas neither of the two subscales was an independent predictor of mortality in the multivariate analysis. Conclusions Depression measured by self-report after HTx is associated with increased mortality during extended follow-up. Clinical utility and predictive validity of specific depression components require further study.acceptedVersio

    Navigating in the dark: Meta-synthesis of subjective experiences of gender dysphoria amongst transgender and gender non-conforming youth

    No full text
    Objective We conducted a meta-synthesis of qualitative research on subjective experiences of gender dysphoria (GD) amongst transgender and gender non-conforming (TGNC) youth in order to improve clinical encounters, complement existing knowledge and potentially influence future research. Methods We systematically searched for qualitative studies on GD in English, German, Spanish and Scandinavian languages in seven databases. Starting with 2000 articles, we finally included 12 papers in the meta-synthesis, following Noblit and Hare's (1988) seven steps for qualitative meta-synthesis research. Results Through the consistent comparison of key concepts, we were able to cluster the findings from the 12 included studies into four meta-themes: (1) the emerging understanding and awareness of GD was described as navigation in the dark, (2) the importance of relationships and societal norms, (3) the role of the body and the exploration of one's own body and (4) sexuality and sexual impulses. The young person's relation with his or her own body and sexuality influences subjective experiences of GD. The experiences are always mediated in relation with other people and societal norms, and they are both long-lasting and changing. Conclusion The phenomenological analysis indicated that GD is a complex phenomenon involving manifold factors that changes across time and place for each individual. GD is not a static phenomenon but an expression of continuous negotiation amongst the body, its impulses, sexual desire and the relationships in which each person participates. Therefore, clinicians who treat TGNC youth should help them to reflect on this developmental process over time as a complement to medical approaches

    Small molecule piperazinyl-benzimidazole antagonists of the gonadotropin-releasing hormone (GnRH) receptor

    Get PDF
    In this communication, we report the synthesis and characterization of a library of small molecule antagonists of the human gonadotropin releasing hormone receptor based upon the 2-(4-tert-butylphenyl)-4-piperazinyl-benzimidazole scaffold via Cu-catalysed azide alkyne cycloaddition. Our main purpose was to find a more soluble compound based on the WAY207024 lead with nanomolar potency to inhibit the GnRH receptor. A late stage diversification by the use of click chemistry was, furthermore developed to allow for expansion of the library in future optimisations. All compounds were tested in a functional assay to determine the individual potency of inhibiting stimulation of the receptor by the endogenous agonist GnRH. In conclusion, we found that compound 8a showed improved solubility compared to WAY207024 and nanomolar affinity to GnRH receptor

    Recent Development of Non-Peptide GnRH Antagonists

    No full text
    The decapeptide gonadotropin-releasing hormone, also referred to as luteinizing hormone-releasing hormone with the sequence (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) plays an important role in regulating the reproductive system. It stimulates differential release of the gonadotropins FSH and LH from pituitary tissue. To date, treatment of hormone-dependent diseases targeting the GnRH receptor, including peptide GnRH agonist and antagonists are now available on the market. The inherited issues associate with peptide agonists and antagonists have however, led to significant interest in developing orally active, small molecule, non-peptide antagonists. In this review, we will summarize all developed small molecule GnRH antagonists along with the most recent clinical data and therapeutic applications

    A reduction in long-term spatial memory persists after discontinuation of peripubertal GnRH agonist treatment in sheep

    No full text
    Chronic gonadotropin-releasing hormone agonist (GnRHa) administration is used where suppression of hypothalamic-pituitary-gonadal axis activity is beneficial, such as steroid-dependent cancers, early onset gender dysphoria, central precocious puberty and as a reversible contraceptive in veterinary medicine. GnRH receptors, however, are expressed outside the reproductive axis, e.g. brain areas such as the hippocampus which is crucial for learning and memory processes. Previous work, using an ovine model, has demonstrated that long-term spatial memory is reduced in adult rams (45 weeks of age), following peripubertal blockade of GnRH signaling (GnRHa: goserelin acetate), and this was independent of the associated loss of gonadal steroid signaling. The current study investigated whether this effect is reversed after discontinuation of GnRHa-treatment. The results demonstrate that peripubertal GnRHa-treatment suppressed reproductive function in rams, which was restored after cessation of GnRHa-treatment at 44 weeks of age, as indicated by similar testes size (relative to body weight) in both GnRHa-Recovery and Control rams at 81 weeks of age. Rams in which GnRHa-treatment was discontinued (GnRHa-Recovery) had comparable spatial maze traverse times to Controls, during spatial orientation and learning assessments at 85 and 99 weeks of age. Former GnRHa-treatment altered how quickly the rams progressed beyond a specific point in the spatial maze at 83 and 99 weeks of age, and the direction of this effect depended on gonadal steroid exposure, i.e. GnRHa-Recovery rams progressed quicker during breeding season and slower during non-breeding season, compared to Controls. The long-term spatial memory performance of GnRHa-Recovery rams remained reduced (P < 0.05, 1.5-fold slower) after discontinuation of GnRHa, compared to Controls. This result suggests that the time at which puberty normally occurs may represent a critical period of hippocampal plasticity. Perturbing normal hippocampal formation in this peripubertal period may also have long lasting effects on other brain areas and aspects of cognitive function

    Peripubertal GnRH and testosterone co-treatment leads to increased familiarity preferences in male sheep

    Get PDF
    Chronic gonadotropin-releasing hormone agonist (GnRHa) treatment is effective for the medical suppression of the hypothalamic-pituitary-gonadal axis in situations like central precocious puberty and gender dysphoria. However, its administration during the peripubertal period could influence normal brain development and function because GnRH receptors are expressed in brain regions that regulate emotions, cognition, motivation and memory. This study used an ovine model to determine whether chronic peripubertal GnRHa-treatment affected the developmental shift from preference of familiarity to novelty. Experimental groups included Controls and GnRHa-treated rams. To differentiate between effects of altered GnRH signaling and those associated with the loss of sex steroids, a group was also included that received testosterone replacement as well as GnRHa (GnRHa + T). Preference for a novel versus familiar object was assessed during 5-min social isolation at 8, 28 and 46 weeks of age. Approach behavior was measured as interactions with and time spent near the objects, whereas avoidance behavior was measured by time spent in the entrance zone and attempts to escape the arena via the entry point. Emotional reactivity was measured by the number of vocalizations, escape attempts and urinations. As Control and GnRHa-treated rams aged, their approach behaviors showed a shift from preference for familiarity (8 weeks) to novelty (46 weeks). In contrast, relative to the Controls the GnRHa + T rams exhibited more approach behaviors towards both objects, at 28 and 46 weeks of age and preferred familiarity at 46 weeks of age. Vocalisation rate was increased in GnRHa treated rams in late puberty (28 weeks) compared to both Control and GnRHa + T rams but this effect was not seen in young adulthood (46 weeks). These results suggest that the specific suppression of testosterone during a developmental window in late puberty may reduce emotional reactivity and hamper learning a flexible adjustment to environmental change. The results also suggest that disruption of either endogenous testosterone signalling or a synergistic action between GnRH and testosterone signalling, may delay maturation of cognitive processes (e.g. information processing) that affects the motivation of rams to approach and avoid objects

    Discovery of a Lead Brain‐Penetrating Gonadotropin‐Releasing Hormone Receptor Antagonist with Saturable Binding in Brain

    No full text
    We report the synthesis, radiosynthesis and biological characterisation of two gonadotropin‐releasing hormone receptor (GnRH−R) antagonists with nanomolar binding affinity. A small library of GnRH−R antagonists was synthesised in 20–67 % overall yield with the aim of identifying a high‐affinity antagonist capable of crossing the blood–brain barrier. Binding affinity to rat GnRH−R was determined by autoradiography in competitive‐binding studies against [125l]buserelin, and inhibition constants were calculated by using the Cheng–Prusoff equation. The radioligands were obtained in 46–79 % radiochemical yield and >95 % purity and with a molar activity of 19–38 MBq/nmol by direct nucleophilic radiofluorination. Positron emission tomography imaging in rat under baseline conditions in comparison to pretreatment with a receptor‐saturating dose of GnRH antagonist revealed saturable uptake (0.1 %ID/mL) into the brain

    Discovery of a lead brain-penetrating gonadotropin-releasing hormone receptor antagonist with saturable binding in brain

    Get PDF
    We report the synthesis, radiosynthesis and biological characterisation of two gonadotropin‐releasing hormone receptor (GnRH−R) antagonists with nanomolar binding affinity. A small library of GnRH−R antagonists was synthesised in 20–67 % overall yield with the aim of identifying a high‐affinity antagonist capable of crossing the blood–brain barrier. Binding affinity to rat GnRH−R was determined by autoradiography in competitive‐binding studies against [125l]buserelin, and inhibition constants were calculated by using the Cheng–Prusoff equation. The radioligands were obtained in 46–79 % radiochemical yield and >95 % purity and with a molar activity of 19–38 MBq/nmol by direct nucleophilic radiofluorination. Positron emission tomography imaging in rat under baseline conditions in comparison to pretreatment with a receptor‐saturating dose of GnRH antagonist revealed saturable uptake (0.1 %ID/mL) into the brain

    Elevated mRNA-Levels of Gonadotropin-Releasing Hormone and Its Receptor in Plaque-Bearing Alzheimer's Disease Transgenic Mice

    No full text
    Research on Alzheimer's disease (AD) has indicated an association between hormones of the hypothalamic-pituitary-gonadal (HPG) axis and cognitive senescence, indicating that post meno-/andropausal changes in HPG axis hormones are implicated in the neuropathology of AD. Studies of transgenic mice with AD pathologies have led to improved understanding of the pathophysiological processes underlying AD. The aims of this study were to explore whether mRNA-levels of gonadotropin-releasing hormone (Gnrh) and its receptor (Gnrhr) were changed in plaque-bearing Alzheimer's disease transgenic mice and to investigate whether these levels and amyloid plaque deposition were downregulated by treatment with a gonadotropin-releasing hormone analog (Gnrh-a; Leuprorelin acetate). The study was performed on mice carrying the Arctic and Swedish amyloid-b precursor protein (AbPP) mutations (tgArcSwe). At 12 months of age, female tgArcSwe mice showed a twofold higher level of Gnrh mRNA and more than 1.5 higher level of Gnrhr mRNA than age matched controls. Male tgArcSwe mice showed the same pattern of changes, albeit more pronounced. In both sexes, Gnrha treatment caused significant down-regulation of Gnrh and Gnrhr mRNA expression. Immunohistochemistry combined with quantitative image analysis revealed no significant changes in the plaque load after Gnrh-a treatment in hippocampus and thalamus. However, plaque load in the cerebral cortex of treated females tended to be lower than in female vehicle-treated mice. The present study points to the involvement of hormonal changes in AD mice models and demonstrates that these changes can be effectively counteracted by pharmacological treatment. Although known to increase in normal aging, our study shows that Gnrh/Gnrhr mRNA expression increases much more dramatically in tgArcSwe mice. Treatment with Leuprorelin acetate successfully abolished the transgene specific effects on Gnrh/Gnrhr mRNA expression. The present experimental approach should serve as a platform for further studies on the usefulness of Gnrh-a treatment in suppressing plaque development in AD

    Elevated mRNA-Levels of Gonadotropin-Releasing Hormone and Its Receptor in Plaque-Bearing Alzheimer's Disease Transgenic Mice

    No full text
    Research on Alzheimer's disease (AD) has indicated an association between hormones of the hypothalamic-pituitary-gonadal (HPG) axis and cognitive senescence, indicating that post meno-/andropausal changes in HPG axis hormones are implicated in the neuropathology of AD. Studies of transgenic mice with AD pathologies have led to improved understanding of the pathophysiological processes underlying AD. The aims of this study were to explore whether mRNA-levels of gonadotropin-releasing hormone (Gnrh) and its receptor (Gnrhr) were changed in plaque-bearing Alzheimer's disease transgenic mice and to investigate whether these levels and amyloid plaque deposition were downregulated by treatment with a gonadotropin-releasing hormone analog (Gnrh-a; Leuprorelin acetate). The study was performed on mice carrying the Arctic and Swedish amyloid-b precursor protein (AbPP) mutations (tgArcSwe). At 12 months of age, female tgArcSwe mice showed a twofold higher level of Gnrh mRNA and more than 1.5 higher level of Gnrhr mRNA than age matched controls. Male tgArcSwe mice showed the same pattern of changes, albeit more pronounced. In both sexes, Gnrha treatment caused significant down-regulation of Gnrh and Gnrhr mRNA expression. Immunohistochemistry combined with quantitative image analysis revealed no significant changes in the plaque load after Gnrh-a treatment in hippocampus and thalamus. However, plaque load in the cerebral cortex of treated females tended to be lower than in female vehicle-treated mice. The present study points to the involvement of hormonal changes in AD mice models and demonstrates that these changes can be effectively counteracted by pharmacological treatment. Although known to increase in normal aging, our study shows that Gnrh/Gnrhr mRNA expression increases much more dramatically in tgArcSwe mice. Treatment with Leuprorelin acetate successfully abolished the transgene specific effects on Gnrh/Gnrhr mRNA expression. The present experimental approach should serve as a platform for further studies on the usefulness of Gnrh-a treatment in suppressing plaque development in AD
    corecore