10 research outputs found

    Molecular functions of endogenous and heterologous genetic RNA elements in the tick-borne encephalitis virus genome

    Get PDF
    Flaviviren sind kleine lipidumhĂŒllte Viren mit einem positiv-strĂ€ngigen RNA Genom, denen eine Reihe von humanpathogenen Krankheitserregern, wie das Dengue-Virus, das Gelbfieber-Virus und das FSME (FrĂŒhsommer-Meningoencephalitis)-Virus angehören. Die Epidemiologie dieser Viren wird weitestgehend durch die ökologischen Anforderungen ihrer Insektenvektoren (StechmĂŒcken oder Zecken) bestimmt und die Krankheitsbilder, die sie hervorrufen, reichen von milden, fieberhaften Symptomen ĂŒber HirnhautentzĂŒndung bis hin zu hĂ€morrhagischem Fieber. Das Genom aller Flaviviren besteht aus einem einzigen RNA-MolekĂŒl, das die kodierende Sequenz fĂŒr das virale Polyprotein enthĂ€lt und das selbst als infektiöse mRNA fungiert. Der einzige offene Leserahmen auf diesem RNA-MolekĂŒl ist an den beiden Enden von nichtkodierenden Regionen flankiert, die eine entscheidende Rolle in der Translation, der Replikation und möglicherweise auch in der Verpackung der Virus-RNA spielen. Verglichen mit den kodierenden Sequenzbereichen des Genoms, sind diese nicht-kodierenden Regionen zwischenden beiden Hauptgruppen, den Insekten- und den Zecken-ĂŒbertragenen Flaviviren, allerdings nur sehr schwach konserviert. Das Hauptziel der vorliegenden Arbeit war die Charakterisierung von endogenen wie auch von heterologen Sequenzelementen im FSME-Virus Genom. Die innerhalb der Flaviviren einzigartige, nicht-kodierende Region am 3’-Ende der viralen RNA (3’-NCR) wird in eine hoch konservierte „Kernregion“ und eine hinsichtlich ihrer Sequenz flexible „variable Region“ unterteilt. Die nĂ€her am 3’-Ende liegende „Kernregion“ enthĂ€lt hoch konservierte RNA-SekundĂ€rstrukturen, die unter anderem essentiell fĂŒr die Virusreplikation sind. Die weiter innen angeordnete „variable“ Region differiert stark hinsichtlich ihrer LĂ€nge und ist auch zwischen einzelnen StĂ€mmen innerhalb der FSME-Virus Familie nicht konserviert. Die Funktion der variablen Region, die in manchen FSME-Virus StĂ€mmen durch eine Poly-A Sequenz gekennzeichnet ist, ist im Wesentlichen unbekannt. Im ersten Teil dieser Arbeit gingen wir der Frage nach, ob die variable Region in der 3’- nicht-kodierenden Sequenz des FSME-Virus einen Einfluss auf die Replikation und/oder Translation der viralen RNA ausĂŒbt. Dazu fĂŒhrten wir Mutationen in diesen Sequenzbereich ein und analysierten in einem sensitiven Luziferase-Reporter-Replikon System potentielle Effekte auf Translation und Replikation. Unsere Ergebnisse zeigten, dass eine VerkĂŒrzung oder Entfernung der Poly-A Sequenz, aber auch eine Deletion der gesamten variablen Region, keinen signifikanten Effekt auf einen dieser beiden Prozesse ausĂŒbt. DarĂŒber hinaus wurde klar, dass die variable Region ohne BeeintrĂ€chtigung der Translation oder Replikation durch heterologe Sequenzelemente ersetzt werden kann. Letztere Erkenntnis lieferte den Grundstein fĂŒr unser zweites Projekt, in dem wir untersuchten, ob das FSME-Virus in der Lage ist, funktionelle microRNAs zu kodieren. MicroRNAs sind eine Klasse von kleinen, nicht-kodierenden RNAs, die essentielle regulatorische Funktionen in der eukaryotischen Genexpression innehaben. Sie vermitteln dabei die sequenz-spezifische, post-translationale Inhibierung oder den Abbau von mRNAs. Obwohl kĂŒrzlich gezeigt werden konnte, dass DNA-Viren eigene microRNAs kodieren und diese in der Wirtszelle auch zu ihren Gunsten einsetzen können, gibt es keine Berichte ĂŒber microRNAs von Viren mit einem RNA-Genom und einem zytoplasmatischen Lebenszyklus. Dem momentanen Wissensstand zufolge beginnt die Biogenese von microRNAs im Zellkern und zeichnet sich dort unter anderem durch einen Schnitt im RNA-MolekĂŒl aus, der den microRNA VorlĂ€ufer fĂŒr die weitere Prozessierung freisetzt. Es wird daher allgemein angenommen, dass dieser Biogenese-Weg fĂŒr Viren mit einem RNA-Genom und einem zytoplasmatischen Lebenszyklus weder zugĂ€nglich noch nutzbar ist. Unser Ziel war es, diese Annahme hinsichtlich ihrer GĂŒltigkeit in einem Modellsystem zu ĂŒberprĂŒfen. Wir klonierten dazu einen heterologen Herpesvirus microRNA-VorlĂ€ufer in die nicht-kodierende 3’-Region des FSME-Virus. In der nachfolgenden Charakterisierung dieser chimĂ€ren Mutante gelang uns der erstmalige Nachweis, dass eine funktionelle microRNA auch von einem zytoplasmatisch replizierenden Virus mit einem RNA-Genom generiert werden kann, ohne dass das notwendigerweise mit einer signifikantenBeeintrĂ€chtigung der RNA Replikation einhergehen muss. Im dritten Teil der vorliegenden Arbeit befassten wir uns mit konservierten RNA-SekundĂ€rstrukturen am 5’-Ende des viralen RNA MolekĂŒls. KĂŒrzlich konnte der 5’-Teil der FSMEVirus Zyklisierungssequenz einer Haarnadelstruktur in diesem Genombereich zugeordnet werden. Um die Rolle dieses und anderer Sequenzelemente hinsichtlich ihrer Funktion zu untersuchen, fĂŒhrten wir in unserem Luziferase-Reportersystem eine Mutationsanaylse durch, die auch eine gezielte VerĂ€nderung der thermodynamischen StabilitĂ€t beinhaltete und so neue Einblicke in die Wirkungsweisen dieser Elemente in der viralen Replikation und Translation liefern konnte. Zusammenfassend lĂ€sst sich sagen, dass die Ergebnisse dieser Arbeit den derzeitigen Wissensstand ĂŒber die Funktion endogener RNA-Elemente im Genom des FSME-Virus erweitern, dass sie wesentlich zu einem besseren VerstĂ€ndnis der komplexen Interaktion von RNA-Viren mit der RNA-Interferenz-Maschinerie der Wirtszelle beitragen, und dass sie darĂŒber hinaus eine wertvolle Grundlage fĂŒr das Design von RNA-Virus Vektoren liefern.Flaviviruses are small enveloped viruses with a positive-stranded RNA genome that include important human pathogens such as Dengue virus, yellow fever virus and tick-borne encephalitis virus. The epidemiology of these viruses is largely determined by the ecological needs of the corresponding insect vectors, i.e. mosquitoes or ticks. The disease patterns they evoke range from mild febrile illness, to encephalitis and hemorrhagic fever. The genome of all flaviviruses consists of a single RNA molecule that per se acts as an infectious messenger RNA and contains the coding sequence for the viral polyprotein. The single open reading frame is flanked by noncoding regions (NCRs) that reside on the terminal ends of the viral RNA strand and occupy important functions in RNA translation, replication and possibly also packaging. Compared to the protein-coding region, the noncoding regions are not well conserved between mosquito- and tick-borne flaviviruses. The main objective of this thesis was the characterization of endogenous as well as heterologous sequence elements in the genome of tick-borne encephalitis virus (TBEV). The unique tick-borne encephalitis 3’-NCR is divided into a highly conserved core region, which comprises essential secondary structures that are involved in RNA replication, and a variable region of inconsistent length that completely lacks sequence conservation. The function of the variable region that is characterized by a poly-A stretch in some but not all TBEV strains is essentially unknown. In our first approach we addressed the question whether the variable part of the 3’-NCR region has any effect on the efficiency of RNA replication or RNA translation. For this purpose we analyzed the impact of various manipulations of the 3’-NCR in a sensitive luciferase-based reporter replicon system. Our results revealed that truncation or complete removal of the poly-A stretch or even the deletion of the entire variable region does not cause a significant effect on any of these processes. Furthermore we observed that the replacement of the variable region with heterologous sequence elements was well tolerated during RNA replication and did not impair viral input RNA translation. These findings provided the basis for our second study in which we examined the capability of tick-borne encephalitis virus to encode functional microRNAs. MicroRNAs are a class of small noncoding RNAs that have essential regulatory functions in eukaryotic gene expression by mediating the sequence-specific translational inhibition or degradation of mRNAs. Although DNA viruses have recently been shown to encode and exploit their own microRNAs in the complex interactions with their mammalian host cells, no such molecules have so far been identified from viruses with an RNA genome and a cytoplasmic replication cycle. Based on the current understanding that microRNA biogenesis is initiated in the nucleus and characterized by an RNA cleavage event, it is generally reasoned that this pathway is not available and unusable for viruses that are confined to the cytoplasm and comprise an RNA genome. We addressed this issue experimentally and introduced a heterologous herpesvirus microRNA-precursor element into the TBEV 3’-NCR. In the subsequent characterization of this chimeric virus we were able to demonstrate for the first time that a functional microRNA can indeed be produced from such a virus without an impairment of viral RNA replication. Additional studies of this thesis concentrated on the conserved RNA secondary structure elements in the 5’-NCR of TBEV. Recently the 5’-part of the TBEV cyclization sequence has been mapped to one of these motifs. To further determine the role of this and other hairpin elements we performed a mutational analysis in our luciferase-reporter system and screened for defects in viral RNA replication and translation. This approach also included the manipulation of the thermodynamic stability of these elements and revealed several new insights into the functional importance of the TBEV 5’-terminal stem-loop structures. Taken together the results of this thesis extend the current knowledge on endogenous genetic RNA elements of TBEV, contribute to the inceptive understanding of the complexinterplay of RNA viruses with the RNA silencing machinery, and also provide a rational basis for RNA virus vector design

    Functional microRNA generated from a cytoplasmic RNA virus

    Get PDF
    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that play a pivotal role in the regulation of posttranscriptional gene expression in a wide range of eukaryotic organisms. Although DNA viruses have been shown to encode miRNAs and exploit the cellular RNA silencing machinery as a convenient way to regulate viral and host gene expression, it is generally believed that this pathway is not available to RNA viruses that replicate in the cytoplasm of the cell because miRNA biogenesis is initiated in the nucleus. In fact, among the >200 viral miRNAs that have been experimentally verified so far, none is derived from an RNA virus. Here, we show that a cytoplasmic RNA virus can indeed encode and produce a functional miRNA. We introduced a heterologous miRNA-precursor stem-loop sequence element into the RNA genome of the flavivirus tick-borne encephalitis virus, and this led to the production of a functional miRNA during viral infection without impairing viral RNA replication. These findings demonstrate that miRNA biogenesis can be used by cytoplasmic RNA viruses to produce regulatory molecules for the modulation of the transcriptome

    Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin

    No full text
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality. S. aureus strains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role in S. aureus pathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbit S. aureus models. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureus therapeutic approaches

    Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin

    No full text
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality. S. aureus strains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role in S. aureus pathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbit S. aureus models. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureus therapeutic approaches
    corecore