6 research outputs found

    Frequency of conjugative transfer of plasmid-encoded ISEcp1 - blaCTX-M-15 and aac(6')-lb-cr genes in Enterobacteriaceae at a tertiary care center in Lebanon - role of transferases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The frequency of transfer of genes encoding resistance to antimicrobial agents was determined by conjugation in ESBL-producing and/or fluoroquinolone or aminoglycoside resistant Enterobacteriaceae clinical isolates at a tertiary care center in Lebanon. In addition, the role of <it>tra </it>genes encoding transferases in mediating conjugation was assessed.</p> <p>Methods</p> <p>Conjugation experiments were done on 53 ESBL-producing and/or fluoroquinolone resistant <it>E. coli </it>and <it>K. pneumoniae </it>and ESBL-producing <it>S. sonnei </it>isolates. Antimicrobial susceptibility testing on parent and transconjugant isolates, and PCR amplifications on plasmid extracts of the resistance-encoding genes: <it>bla</it><sub>CTX-M-15 </sub>with the <it>ISEcp1 </it>insertion sequence, the <it>aac(6')-lb-cr </it>and <it>qnr</it>S genes, as well as <it>tra </it>encoding transferases genes were done. Random amplified polymorphic DNA (RAPD) analysis was performed to demonstrate whether conjugative isolates are clonal and whether they are linked epidemiologically to a particular source.</p> <p>Results</p> <p>Antimicrobial susceptibility testing on transconjugants revealed that 26 out of 53 (49%) ESBL-producing <it>Enterobacteriaceae </it>were able to transfer antimicrobial resistance to the recipients. Transfer of high-level resistance to the transconjugants encoded by the <it>bla</it><sub>CTX-M-15 </sub>gene downstream the <it>ISEcp1 </it>insertion sequence against 3rd generation cephalosporins, and of low-level resistance against ciprofloxacin, and variable levels of resistance against aminoglycosides encoded by <it>aac(6')-lb-cr </it>gene, were observed in transconjugants. <it>tra </it>encoding transferase genes were detected exclusively in conjugative isolates.</p> <p>Conclusion</p> <p>In conclusion, the frequency of transfer of antimicrobial resistance in non clonal <it>Enterobacteriaceae </it>at the tertiary care center by conjugation was 49%. Conjugation occurred in isolates expressing the <it>tra </it>encoding transferase genes. Multiple conjugative strains harboring the plasmid encoded antimicrobial resistant genes were circulating in the medical center. Molecular epidemiology analysis showed that conjugative isolates are neither clonal nor linked to a particular site and transfer of antimicrobial resistance is by horizontal transfer of plasmids.</p

    Temporally distinct roles for tumor suppressor pathways in cell cycle arrest and cellular senescence in Cyclin D1-driven tumor

    No full text
    Abstract Background Cellular senescence represents a tumor suppressive response to a variety of aberrant and oncogenic insults. We have previously described a transgenic mouse model of Cyclin D1-driven senescence in pineal cells that opposes tumor progression. We now attempted to define the molecular mechanisms leading to p53 activation in this model, and to identify effectors of Cyclin D1-induced senescence. Results Senescence evolved over a period of weeks, with initial hyperproliferation followed by cell cycle arrest due to ROS production leading to activation of a DNA damage response and the p53 pathway. Interestingly, cell cycle exit was associated with repression of the Cyclin-dependent kinase Cdk2. This was followed days later by formation of heterochromatin foci correlating with RB protein hypophosphorylation. In the absence of the Cdk4-inhibitor p18Ink4c, cell cycle exit was delayed but most cells eventually showed a senescent phenotype. However, tumors later arose from this premalignant, largely senescent lesion. We found that the p53 pathway was intact in tumors arising in a p18Ink4c-/- background, indicating that the two genes represent distinct tumor suppressor pathways. Upon tumor progression, both p18Ink4c-/- and p53-/- tumors showed increased Cdk2 expression. Inhibition of Cdk2 in cultured pre-tumorigenic and tumor cells of both backgrounds resulted in decreased proliferation and evidence of senescence. Conclusion Our findings indicate that the p53 and the RB pathways play temporally distinct roles in senescence induction in Cyclin D1-expressing cells, and that Cdk2 inhibition plays a role in tumor suppression, and may be a useful therapeutic target.</p

    p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells

    No full text
    International audienceThe restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19 Arf expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors
    corecore