7,612 research outputs found

    Finite-size scaling of eigenstate thermalization

    Full text link
    According to the eigenstate thermalization hypothesis (ETH), even isolated quantum systems can thermalize because the eigenstate-to-eigenstate fluctuations of typical observables vanish in the limit of large systems. Of course, isolated systems are by nature finite, and the main way of computing such quantities is through numerical evaluation for finite-size systems. Therefore, the finite-size scaling of the fluctuations of eigenstate expectation values is a central aspect of the ETH. In this work, we present numerical evidence that for generic non-integrable systems these fluctuations scale with a universal power law D−1/2D^{-1/2} with the dimension DD of the Hilbert space. We provide heuristic arguments, in the same spirit as the ETH, to explain this universal result. Our results are based on the analysis of three families of models, and several observables for each model. Each family includes integrable members, and we show how the system size where the universal power law becomes visible is affected by the proximity to integrability.Comment: 9 pages, 8 figures; accepted for publication in Phys. Rev.

    Scalability and robustness of a market-based network resource allocation system

    No full text
    In this paper, we consider issues related to scalability and robustness in designing a market-based multi-agent system that allocates bandwidth in a communications network. Specifically, an empirical evaluation is carried out to assess the system performance under a variety of design configurations in order to provide an insight into network deployment issues. This extends our previous work in which we developed an application that makes use of market-based software agents that compete in decentralised marketplaces to buy and sell bandwidth resources. Our new results show that given a light to moderate network traffic load, partitioning the network into a few regions, each with a separate market server, gives a higher call success rate than by using a single market. Moreover, a trade-off in the number of regions was also noted between the average call success rate and the number of messages received per market server. Finally, given the possibility of market failures, we observe that the average call success rates increase with an increasing number of markets until a maximum is reached

    Representations of swine flu: Perspectives from a Malaysian pig farm

    Get PDF
    © The Author(s), 2010. This is the author's accepted manuscript. The final published article is available from the link below.Novel influenza viruses are seen, internationally, as posing considerable health challenges, but public responses to such viruses are often rooted in cultural representations of disease and risk. However, little research has been conducted in locations associated with the origin of a pandemic. We examined representations and risk perceptions associated with swine flu amongst 120 Malaysian pig farmers. Thirty-seven per cent of respondents felt at particular risk of infection, two-thirds were somewhat or very concerned about being infected. Those respondents who were the most anxious believed particular societal “out-groups” (homosexuals, the homeless and prostitutes) to be at higher infection risk. Although few (4%) reported direct discrimination, 46% claimed friends had avoided them since the swine flu outbreak. Findings are discussed in the context of evolutionary, social representations and terror management theories of response to pandemic threat

    Initial behavioural and attitudinal responses to influenza A, H1N1 ('swine flu')

    Get PDF
    Copyright © 2010 by the BMJ Publishing Group Ltd. All rights reserved.This study was sponsored by Canadian Institute of Health Research (CIHR), and supported by the Community Coalition Concerned about SARS and other community organisations in the great Toronto area

    Protein misfolding thermodynamics

    Get PDF
    It is known that protein misfolding is governed by the hydrophobic effect of solutes at hydrophobic amino acid side chains. The hydrophobic force of nonaqueous solutes acts as a driving force for the spatial rearrangement of protein side chains, whose structural transitions need to be regulated in both time and space. Smaller hydrophobic solutes exert more effect at protein side chains, which involves the clustering of proteins into misfolded shapes. The consequences of misfolding are loss of protein function, gain of toxic function, or both. This is a physical process, whose result has been directly linked to a large number of human diseases

    Enhancing the Productivity, Innovation and Wellbeing of Technical Employees-What We Know and Don’t Know: A Conceptual Study and Literature Review From Technical and Managerial Orientation Perspective

    Full text link
    A primary goal of managers in any organization is to increase the productivity of its operations. With rising competition and a corresponding increase in work place stress levels, there is a resurgence of interest related to innovation and wellbeing in the organizational context as well. In this setting, improving the productivity , innovativeness and wellbeing of technical employees is of paramount importance as these professionals often represent the core knowledge competency of an organization . This is why, getting the best out of the technical employees, who often are the lifeblood of innovation and productivity, should be a primary goal of managers. However, managing technical professionals poses challenges for managers as these professionals are a class of knowledge workers who have unique requirements and understanding these differences and acting accordingly is important to attract, retain and motivate them. Managing technical employees poses a further challenge as when technical workers themselves are promoted to managerial roles, the transition sometimes becomes challenging due to the differing orientations of technical vs. managerial mindsets. Such differing orientation has implications for enhancing productivity, innovativeness and wellbeing of technical employees. This paper carried out a literature review to find out whether a user friendly and integrated conceptual model is available to understand this technical-managerial dichotomy and the consequent implications so that technical talents can be managed better. From a user perspective, this review highlights the need for further research and the development of a more integrated and cohesive framework in this area

    Thermodynamics of mechanopeptide sidechains

    Get PDF
    Biological systems are often exposed to mechanical perturbations, which may modulate many biochemical processes. Ligand binding involves a wide range of structural changes in the receptor protein, from hinge movement of entire domains to minor sidechain rearrangements in the binding pocket residues. Hydrophobic ligand binding to protein alters the system’s vibrational free energy, allowing different conformational states of allosteric proteins. Excess hydrophobicity in protein–ligand binding generates mechanical force along the peptide backbone through the hydrophobic effect. We describe mechanically strained peptide structures involved in protein aggregation to determine the transition between the initial condensation of hydrophobic polypeptide chains into ordered fibrillar structures. This transition is due to the excess attractive hydrophobic force by ligand binding within proteins into fibrillar assemblies. The process of fibrillar formation has a mechanosensitive nature, which significantly influences the pathogenesis of several neurodegenerative diseases

    Entropy and Exact Matrix Product Representation of the Laughlin Wave Function

    Get PDF
    An analytical expression for the von Neumann entropy of the Laughlin wave function is obtained for any possible bipartition between the particles described by this wave function, for filling fraction nu=1. Also, for filling fraction nu=1/m, where m is an odd integer, an upper bound on this entropy is exhibited. These results yield a bound on the smallest possible size of the matrices for an exact representation of the Laughlin ansatz in terms of a matrix product state. An analytical matrix product state representation of this state is proposed in terms of representations of the Clifford algebra. For nu=1, this representation is shown to be asymptotically optimal in the limit of a large number of particles
    • 

    corecore