716 research outputs found
Faxen relations in solids - a generalized approach to particle motion in elasticity and viscoelasticity
A movable inclusion in an elastic material oscillates as a rigid body with
six degrees of freedom. Displacement/rotation and force/moment tensors which
express the motion of the inclusion in terms of the displacement and force at
arbitrary exterior points are introduced. Using reciprocity arguments two
general identities are derived relating these tensors. Applications of the
identities to spherical particles provide several new results, including simple
expressions for the force and moment on the particle due to plane wave
excitation.Comment: 11 pages, 4 figure
Influence of Noise on Force Measurements
We demonstrate how the ineluctable presence of thermal noise alters the
measurement of forces acting on microscopic and nanoscopic objects. We quantify
this effect exemplarily for a Brownian particle near a wall subjected to
gravitational and electrostatic forces. Our results demonstrate that the force
measurement process is prone to artifacts if the noise is not correctly taken
into account.Comment: 4 Pages, 4 Figures, Accepte
The short-time self-diffusion coefficient of a sphere in a suspension of rigid rods
The short--time self diffusion coefficient of a sphere in a suspension of
rigid rods is calculated in first order in the rod volume fraction. For low rod
concentrations the correction to the Einstein diffusion constant of the sphere
is a linear function of the rod volume fraction with the slope proportional to
the equilibrium averaged mobility diminution trace of the sphere interacting
with a single freely translating and rotating rod. The two--body hydrodynamic
interactions are calculated using the so--called bead model in which the rod is
replaced by a stiff linear chain of touching spheres. The interactions between
spheres are calculated numerically using the multipole method. Also an
analytical expression for the diffusion coefficient as a function of the rod
aspect ratio is derived in the limit of very long rods. We show that in this
limit the correction to the Einstein diffusion constant does not depend on the
size of the tracer sphere. The higher order corrections depending on the
applied model are computed numerically. An approximate expression is provided,
valid for a wide range of aspect ratios.Comment: 11 pages, 6 figure
Interleukin-17/Interleukin-17 Receptor-Mediated Signaling Is Important for Generation of an Optimal Polymorphonuclear Response against Toxoplasma gondii Infection
We investigated the role of interleukin-17 (IL-17)/IL-17 receptor (IL-17R)-mediated signaling in the protective immunity against Toxoplasma gondii. IL-17R−/− mice developed a normal adaptive immunity against the parasite. However, increased mortality in the knockout animals can be attributed to a defect in the migration of polymorphonuclear leukocytes to infected sites during early infection
Rotational and translational self-diffusion in concentrated suspensions of permeable particles
In our recent work on concentrated suspensions of uniformly porous colloidal
spheres with excluded volume interactions, a variety of short-time dynamic
properties were calculated, except for the rotational self-diffusion
coefficient. This missing quantity is included in the present paper. Using a
precise hydrodynamic force multipole simulation method, the rotational
self-diffusion coefficient is evaluated for concentrated suspensions of
permeable particles. Results are presented for particle volume fractions up to
45%, and for a wide range of permeability values. From the simulation results
and earlier results for the first-order virial coefficient, we find that the
rotational self-diffusion coefficient of permeable spheres can be scaled to the
corresponding coefficient of impermeable particles of the same size. We also
show that a similar scaling applies to the translational self-diffusion
coefficient considered earlier. From the scaling relations, accurate analytic
approximations for the rotational and translational self-diffusion coefficients
in concentrated systems are obtained, useful to the experimental analysis of
permeable-particle diffusion. The simulation results for rotational diffusion
of permeable particles are used to show that a generalized
Stokes-Einstein-Debye relation between rotational self-diffusion coefficient
and high-frequency viscosity is not satisfied.Comment: 4 figure
Hydrodynamic interaction in quasi-two-dimensional suspensions
Confinement between two parallel surfaces is found, theoretically and
experimentally, to drastically affect the hydrodynamic interaction between
colloid particles, changing the sign of the coupling, its decay with distance
and its concentration dependence. In particular, we show that three-body
effects do not modify the coupling at large distances as would be expected from
hydrodynamic screening.Comment: 8 pages, 2 figure
Pulling and Pushing a Cargo With a Catalytically Active Carrier
Catalytically active particles suspended in a liquid can move due to
self-phoresis by generating solute gradients via chemical reactions of the
solvent occurring at parts of their surface. Such particles can be used as
carriers at the micro-scale. As a simple model for a carrier-cargo system we
consider a catalytically active particle connected by a thin rigid rod to a
catalytically inert cargo particle. We show that the velocity of the composite
strongly depends on the relative orientation of the carrier-cargo link.
Accordingly, there is an optimal configuration for the linkage. The subtlety of
such carriers is underscored by the observation that a spherical particle
completely covered by catalyst, which is motionless when isolated, acts as a
carrier once attached to a cargo.Comment: 6 pages, 2 figures, to appear in EPL (https://www.epletters.net/
Rotational Diffusion in a Chain of Particles
We study the coupled rotational diffusion in a two-particle chain on the
basis of a Smoluchowski equation and calculate time-correlation functions that
are measurable in an experiment. This might be used to explore hydrodynamic
interactions in the limit where lubrication theory is valid.Comment: 7 pages, 2 figures, to be published in J. Phys.: Condens. Matte
Categorification of a linear algebra identity and factorization of Serre functors
We provide a categorical interpretation of a well-known identity from linear
algebra as an isomorphism of certain functors between triangulated categories
arising from finite dimensional algebras.
As a consequence, we deduce that the Serre functor of a finite dimensional
triangular algebra A has always a lift, up to shift, to a product of suitably
defined reflection functors in the category of perfect complexes over the
trivial extension algebra of A.Comment: 18 pages; Minor changes, references added, new Section 2.
Which effective viscosity?
Magmas undergoing shear are prime examples of flows that involve the transport of solids and gases by a separate (silicate melt) carrier phase. Such flows are called multiphase, and have attracted much attention due to their important range of engineering applications. Where the volume fraction of the dispersed phase (crystals) is large, the influence of particles on the fluid motion becomes significant and must be taken into account in any explanation of the bulk behaviour of the mixture. For congested magma deforming well in excess of the dilute limit (particle concentrations >40% by volume), sudden changes in the effective or relative viscosity can be expected. The picture is complicated further by the fact that the melt phase is temperature- and shear-rate-dependent. In the absence of a constitutive law for the flow of congested magma under an applied force, it is far from clear which of the many hundreds of empirical formulae devised to predict the rheology of suspensions as the particle fraction increases with time are best suited. Some of the more commonly used expressions in geology and engineering are reviewed with an aim to home in on those variables key to an improved understanding of magma rheology. These include a temperature, compositional and shear-rate dependency of viscosity of the melt phase with the shear-rate dependency of the crystal (particle) packing arrangement. Building on previous formulations, a new expression for the effective (relative) viscosity of magma is proposed that gives users the option to define a packing fraction range as a function of shear stress. Comparison is drawn between processes (segregation, clustering, jamming), common in industrial slurries, and structures seen preserved in igneous rocks. An equivalence is made such that congested magma, viewed in purely mechanical terms as a high-temperature slurry, is an inherently non-equilibrium material where flow at large Péclet numbers may result in shear thinning and spontaneous development of layering
- …