16,615 research outputs found

    Photometric properties and luminosity function of nearby massive early-type galaxies

    Full text link
    We perform photometric analyses for a bright early-type galaxy (ETG) sample with 2949 galaxies (Mr<−22.5M_{\rm r}<-22.5 mag) in the redshift range of 0.05 to 0.15, drawn from the SDSS DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for brightest galaxies (Mr<−23M_{\rm r}<-23 mag), our Petrosian magnitudes, and isophotal magnitudes to 25 mag/arcsec2{\rm mag/arcsec^2} and 1\% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian values, respectively. In the first case the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r50r_{50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright-end of the rr-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al. (2003), and the stellar mass densities at M∗∼5×1011M⊙M_{\ast}\sim 5\times10^{11} M_{\odot} and M∗∼1012M⊙M_{\ast}\sim 10^{12} M_{\odot} are a few tenths and a factor of few higher than those of Bernardi et al. (2010). These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.Comment: 43 pages, 14 figures, version accepted for publication in the Astrophysical Journa

    Numerical simulation of stress wave interaction in short-delay blasting with a single free surface

    Get PDF
    It is generally believed that stress wave superposition does occur and plays an important role in cutting blasting with a single free surface, in which explosive columns of several blast holes with short spacing are simultaneously initiated. However, considering the large scatter of pyrotechnic delay detonators that are used in most underground metal mines in China, the existence of stress wave superposition and the influence of this effect on rock fragmentation are questionable. In the present study, the stress wave interaction in short-delay blasting with a single free surface was studied through the use of the LS-DYNA code. Stress waves induced by two blast holes blasting with different delays were compared with the single blast hole case, and the effects of delay time, detonating location and spacing on stress wave superposition were investigated. The numerical results showed that for blast holes with a 1 m spacing, stress wave interaction only occurs when the delay time is 0 ms and does not occur for blasting with delays of more than 1 ms. An increase in the duration of a stress wave via optimizing the detonation location does not improve the stress wave interaction. For a 1 ms delay, stress wave superposition only occurs when the spacing is more than 4 m, which is a rare case in practice. The results indicated that the occurrence of stress wave superposition for blasting with a single free surface is strictly limited to conditions that would be difficult to achieve under the existing delay accuracy of detonators. Therefore, it is unrealistic to improve fragmentation via the stress wave interaction in field blasting. Furthermore, the numerical results of the stress wave interaction also show that there would be a great potential to reduce the hazardous vibrations induced by short-delay blasting by using electronic detonators with better control of delays in an order of several milliseconds

    Phase separation in the trapped spinor gases with anisotropic spin-spin interaction

    Full text link
    We investigate the effect of the anisotropic spin-spin interaction on the ground state density distribution of the one dimensional spin-1 bosonic gases within a modified Gross-Pitaevskii theory both in the weakly interaction regime and in the Tonks-Girardeau (TG) regime. We find that for ferromagnetic spinor gas the phase separation occurs even for weak anisotropy of the spin-spin interaction, which becomes more and more obvious and the component of mF=0m_F=0 diminishes as the anisotropy increases. However, no phase separation is found for anti-ferromagnetic spinor gas in both regimes.Comment: 5pages, 4 figure

    The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil

    Full text link
    Under application of an electric field greater than a triggering electric field Ec∼0.4E_c \sim 0.4 kV/mm, suspensions obtained by dispersing particles of the synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or column-like structures parallel to the applied electric field. This micro-structuring results in a transition in the suspensions' rheological behavior, from a Newtonian-like behavior to a shear-thinning rheology with a significant yield stress. This behavior is studied as a function of particle volume fraction and strength of the applied electric field, EE. The steady shear flow curves are observed to scale onto a master curve with respect to EE, in a manner similar to what was recently found for suspensions of laponite clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield stress is demonstrated to scale with respect to EE as a power law with an exponent α∼1.93\alpha \sim 1.93, while the static yield stress inferred from constant shear stress tests exhibits a similar behavior with α∼1.58\alpha \sim 1.58. The suspensions are also studied in the framework of thixotropic fluids: the bifurcation in the rheology behavior when letting the system flow and evolve under a constant applied shear stress is characterized, and a bifurcation yield stress, estimated as the applied shear stress at which viscosity bifurcation occurs, is measured to scale as EαE^\alpha with α∼0.5\alpha \sim 0.5 to 0.6. All measured yield stresses increase with the particle fraction Φ\Phi of the suspension. For the static yield stress, a scaling law Φβ\Phi^\beta, with β=0.54\beta = 0.54, is found. The results are found to be reasonably consistent with each other. Their similarities with-, and discrepancies to- results obtained on laponite-oil suspensions are discussed

    Phenomenological theory of a scalar electronic order: application to skutterudite PrFe4P12

    Full text link
    By phenomenological Landau analysis, it is shown that a scalar order parameter with the point-group symmetry Γ1g\Gamma_{1g} explains most properties associated with the phase transition in PrFe4_4P12_{12} at 6.5 K. The scalar-order model reproduces magnetic and elastic properties in PrFe4_4P12_{12} consistently such as (i) the anomaly of the magnetic susceptibility and elastic constant at the transition temperature, (ii) anisotropy of the magnetic susceptibility in the presence of uniaxial pressure, and (iii) the anomaly in the elastic constant in magnetic field. An Ehrenfest relation is derived which relates the anomaly of the magnetic susceptibility to that of the elastic constant at the transition.Comment: 16 pages, 9 figure
    • …
    corecore