166 research outputs found

    Learning to Adaptively Scale Recurrent Neural Networks

    Full text link
    Recent advancements in recurrent neural network (RNN) research have demonstrated the superiority of utilizing multiscale structures in learning temporal representations of time series. Currently, most of multiscale RNNs use fixed scales, which do not comply with the nature of dynamical temporal patterns among sequences. In this paper, we propose Adaptively Scaled Recurrent Neural Networks (ASRNN), a simple but efficient way to handle this problem. Instead of using predefined scales, ASRNNs are able to learn and adjust scales based on different temporal contexts, making them more flexible in modeling multiscale patterns. Compared with other multiscale RNNs, ASRNNs are bestowed upon dynamical scaling capabilities with much simpler structures, and are easy to be integrated with various RNN cells. The experiments on multiple sequence modeling tasks indicate ASRNNs can efficiently adapt scales based on different sequence contexts and yield better performances than baselines without dynamical scaling abilities

    LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation

    Full text link
    In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness text-to-image generation. Although recent efforts have been made to improve controllability by giving fine-grained guidance (e.g., sketch and scribbles), this issue has not been fundamentally tackled since users have to provide such guidance information manually. In this work, we strive to synthesize high-fidelity images that are semantically aligned with a given textual prompt without any guidance. Toward this end, we propose a coarse-to-fine paradigm to achieve layout planning and image generation. Concretely, we first generate the coarse-grained layout conditioned on a given textual prompt via in-context learning based on Large Language Models. Afterward, we propose a fine-grained object-interaction diffusion method to synthesize high-faithfulness images conditioned on the prompt and the automatically generated layout. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art models in terms of layout and image generation. Our code and settings are available at https://layoutllm-t2i.github.io.Comment: Accepted by ACM MM 202

    One Point is All You Need: Directional Attention Point for Feature Learning

    Full text link
    We present a novel attention-based mechanism for learning enhanced point features for tasks such as point cloud classification and segmentation. Our key message is that if the right attention point is selected, then "one point is all you need" -- not a sequence as in a recurrent model and not a pre-selected set as in all prior works. Also, where the attention point is should be learned, from data and specific to the task at hand. Our mechanism is characterized by a new and simple convolution, which combines the feature at an input point with the feature at its associated attention point. We call such a point a directional attention point (DAP), since it is found by adding to the original point an offset vector that is learned by maximizing the task performance in training. We show that our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks such as ModelNet40, ShapeNetPart, and S3DIS demonstrate that our DAP-enabled networks consistently outperform the respective original networks, as well as all other competitive alternatives, including those employing pre-selected sets of attention points

    Microstructure evolution and electrochemical properties of TiO 2 /Ti-35Nb-2Ta-3Zr micro/nano-composites fabricated by friction stir processing

    Get PDF
    Forming stable anti-corrosion surface layer and homogenized microstructure on the surface of material has become a major challenge in developing biomedical β titanium alloy. In the study, TiO 2 /Ti-35Nb-2Ta-3Zr anti-corrosion micro/nano-composites with different amount of TiO 2 particles were successfully fabricated by one-pass friction stir processing (FSP). The composition, microstructure and electrochemical properties of the material are characterized systematically. In particular, compact passive oxide films formed on surface of the material after electrochemical corrosion are elaborated from constituent, thickness and structural characteristics. Furthermore, the relationship between various FSP parameters, microstructure presented and corresponding corrosion resistance has been discussed in detail. The results show that TiO 2 /Ti-35Nb-2Ta-3Zr micro/nano-composite layers possess massive uniform β grains with homogeneous dispersive oxygen on the surface. Nanocrystallines surrounded by amorphous phases and α″ martensite accompanied with dislocations are discovered. TiO 2 /Ti-35Nb-2Ta-3Zr micro/nano-composite layers present outstanding corrosion resistance. More TiO 2 added and higher rotation speed promotes the optimization in corrosion resistance forming more compact passive films. The study displays the potential of a new micro/nano-composite with outstanding surface microstructure and corrosion resistance that serves better as a biomedical implant. © 2019 Elsevier Lt

    Unbalanced Circuit-PSI from Oblivious Key-Value Retrieval

    Get PDF
    Circuit-based Private Set Intersection (circuit-PSI) enables two parties, a client and a server, with their input sets XX and YY respectively, to securely compute a function ff on the intersection XYX \cap Y, while keeping XYX \cap Y secret from both parties. Although several computationally efficient circuit-PSI protocols have been proposed recently, they most focus on the balanced scenario where X|X| is similar to Y|Y|. However, in many realistic scenarios, a circuit-PSI protocol may be performed in the unbalanced case where X|X| is remarkably smaller than Y|Y| (e.g., the client is a constrained device holding a small set, while the server is a service provider holding a large set). Directly applying existing protocols to this scenario will lead to significant efficiency issues because the communication complexity of the protocols scales at least linearly with the size of the larger set, i.e., max(X,Y)\max(|X|, |Y|). In this work, we put forth efficient constructions for unbalanced circuit-PSI with sublinear communication complexity in the size of the larger set. The main insight is that we formalize unbalanced circuit-PSI as obliviously retrieving values corresponding to keys from a set of key-value pairs. To this end, we present a new functionality called Oblivious Key-Value Retrieval (OKVR) and design the OKVR protocol from a new notion called sparse Oblivious Key-Value Stores (sparse OKVS). We conduct extensive experiments and the results show that our constructions remarkably outperform the state-of-the-art circuit-PSI schemes (EUROCRYPT\u2719, PETs\u2722, CCS\u2722), i.e., 1.8448.86×1.84 \sim 48.86 \times communication improvement and 1.5039.81×1.50 \sim39.81 \times faster computation. Very recently, Son and Jeong (AsiaCCS\u2723) also present unbalanced circuit-PSI protocols, and our constructions outperform them by 1.1815.99×1.18 \sim 15.99 \times and 1.2210.44×1.22 \sim 10.44 \times in communication and computation overhead, respectively, depending on set sizes and network environments

    Metabolism of Bis(4-fluorobenzyl)trisulfide and Its Formation of Hemoglobin Adduct in Rat Erythrocytes

    Get PDF
    ABSTRACT Bis(4-fluorobenzyl)trisulfide (BFBTS) is a promising new antitumor agent under investigation. It was metabolized rapidly in vivo in rat, but the metabolic fate and primary site of metabolism have not been clarified. In this study, we investigated the role of blood in the metabolism of BFBTS and compared the BFBTS metabolic potencies in whole blood, plasma, and red blood cells (RBCs) in vitro. Three major metabolites of BFBTS [bis(4-fluorobenzyl) disulfide, para-fluorobenzyl-mercaptan, and para-fluorobenzoic acid] were detected in RBCs and whole blood. Significant metabolism of BFBTS was observed in RBCs that were identified as the primary site of BFBTS metabolism. Thiols, including endogenous thiols and hemoglobin, were proven to be the critical factor in BFBTS metabolism. S-Fluorobenzylmercaptocysteine Hb (hemoglobin) adducts were characterized in vitro at BFBTS concentration of 250 mM and higher, whereas such Hb adducts were not detected in RBCs from Sprague-Dawley rats receiving a single intravenous injection of BFBTS at a high dose of 50 mg/kg. Liquid chromatography-tandem mass spectrometry results revealed that adduction induced by BFBTS was prone to take place at Cys125 of globin b chains. Otherwise, glutathionylation of Hb was also observed that may be attributed to the oxidative effect of BFBTS. In summary, BFBTS was unstable when it met with thiols, and RBCs were the main site of BFBTS metabolism. Hb adducts induced by BFBTS could be detected in vitro at high concentration but not in vivo even at high dose

    Measurement of distal intramural spread and the optimal distal resection by naked eyes after neoadjuvant radiation for rectal cancers

    Get PDF
    BACKGROUND: The safe distance between the intraoperative resection line and the visible margin of the distal rectal tumor after preoperative radiotherapy is unclear. We aimed to investigate the furthest tumor intramural spread distance in fresh tissue to determine a safe distal intraoperative resection margin length. METHODS: Twenty rectal cancer specimens were collected after preoperative radiotherapy. Tumor intramural spread distances were defined as the distance between the tumor’s visible and microscopic margins. Visible tumor margins in fresh specimens were identified during the operation and were labeled with 5 - 0 sutures under the naked eye at the distal 5, 6, and 7 o’clock directions of visible margins immediately after removal of the tumor. After fixation with formalin, the sutures were injected with nanocarbon particles. Longitudinal tissues were collected along three labels and stained with hematoxylin and eosin. The spread distance after formalin fixation was measured between the furthest intramural spread of tumor cells and the nanocarbon under a microscope. A positive intramural spread distance indicated that the furthest tumor cell was distal to the nanocarbon, and a negative value indicated that the tumor cell was proximal to the nanocarbon. The tumor intramural spread distance in fresh tissue during the operation was 1.75 times the tumor intramural spread distance after formalin fixation according to the literature. RESULTS: At the distal 5, 6, and 7 o’clock direction, seven (35%), five (25%), and six (30%) patients, respectively, had distal tumor cell intramural spread distance > 0 mm. The mean and 95% confidence interval of tumor cell intramural spread distance in fresh tissue during operation was − 0.3 (95%CI − 4.0 ~ 3.4) mm, − 0.9 (95%CI − 3.4 ~ 1.7) mm, and − 0.4 (95%CI − 3.5 ~ 2.8) mm, respectively. The maximal intraoperative intramural spread distances in fresh tissue were 8.8, 7, and 7 mm, respectively. CONCLUSIONS: The intraoperative distance between the distal resection line and the visible margin of the rectal tumor after radiotherapy should not be less than 1 cm to ensure oncological safety

    Exciton-phonon interaction in quasi-two dimensional layered (PEA)2(CsPbBr3)n-1PbBr4 perovskite.

    Get PDF
    Two-dimensional (2D) Ruddlesden-Popper perovskites with bulky organic cations have attracted extensive attention in light-emitting devices and photovoltaics due to their robust environment stability, tunable luminescent color, strong exciton binding and promising efficiency. A quantum well (QW) structure is spontaneously formed by sandwiching PbBr4 layers into bulky organic cations. However, some intrinsic excitonic mechanisms in these materials still need to be elucidated. In this study, the exciton-phonon interaction of quasi-2D (PEA)2(CsPbBr3)n-1PbBr4 with different PbBr4 layer numbers (n) was analyzed by temperature-varied photoluminescence (PL), scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD). The mechanism of bandgap shifting with temperature was found to be dominated by the thermal expansion effect in the large-n 2D and bulk perovskite, and gradually switched to exciton-phonon interaction in the n = 1 (PEA)2PbBr4 phase, indicating enhanced exciton-phonon interaction in the thinner quantum well structure. Further analysis showed that the enhanced exciton-phonon interaction originated from the longitudinal optical phonon-exciton Fröhlich interaction rather than acoustic phonon-exciton coupling. We believe that our results will benefit the further optimization of light-emitting devices based on 2D perovskites

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure
    corecore