19 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Regional unconformities and their controls on hydrocarbon accumulation in Sichuan Basin, SW China

    No full text
    Based on outcrop, seismic and drilling data, the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied. Three findings are obtained. First, six regional stratigraphic unconformities are mainly developed in the Sichuan Basin, from the bottom up, which are between pre-Sinian and Sinian, between Sinian and Cambrian, between pre-Permian and Permian, between middle and upper Permian, between middle and upper Triassic, and between Triassic and Jurassic. Especially, 16 of 21 conventional (and tight) gas fields discovered are believed to have formed in relation to regional unconformities. Second, regional unconformity mainly controls hydrocarbon accumulation from five aspects: (1) The porosity and permeability of reservoirs under the unconformity are improved through weathering crust karstification to form large-scale karst reservoirs; (2) Good source-reservoir-caprock assemblage can form near the unconformity, which provides a basis for forming large gas field; (3) Regional unconformity may lead to stratigraphic pinch-out and rugged ancient landform, giving rise to a large area of stratigraphic and lithologic trap groups; (4) Regional unconformity provides a dominant channel for lateral migration of oil and gas; and (5) Regional unconformity is conducive to large-scale accumulation of oil and gas. Third, the areas related to regional unconformities are the exploration focus of large gas fields in the Sichuan Basin. The pre-Sinian is found with source rocks, reservoir rocks and other favorable conditions for the formation of large gas fields, and presents a large exploration potential. Thus, it is expected to be an important strategic replacement

    Main controlling factors and genetic mechanism for the development of high-quality reservoirs in the mound-shoal complexes on the platform margin of the intra-cratonic rift: A case study of the fourth member of the Dengying Formation in the eastern limb of Deyang-Anyue intra-cratonic rift, Sichuan Basin, China

    No full text
    Reservoirs of large platform margin mound-shoal complexes of the fourth member of Dengying Formation (Deng 4 Member) are developed in the margin of the Deyang-Anyue intra-cratonic rift in the Sichuan Basin and it is the main pay horizon of the Anyue gas field. A clear understanding of the reservoir genetic mechanism of the mound-shoal complexes is the key to predicting the distribution of high-quality reservoirs and guiding the deployment of exploration. Based on the data of drilling, seismic, outcrop, and analytical data, this paper analyzes the reservoir characteristics and genetic mechanism of the mound-shoal complexes at the margin of the Deng 4 Member and obtains three new understandings: (1) Platform margin mound-shoal reservoirs are developed on the margin of Deyang-Anyue intra-cratonic rift in Sichuan Basin. The mound-shoal complexes are mainly composed of algal mounds and bioclastic shoals in multiple stages. The reservoir space is mainly dissolution pores, caverns, and fractures, with low porosity and low permeability in general. (2) The reservoir can be divided into three types, i.e., the fracture-dissolution pore type, the dissolution pore type, and the matrix pore type, and the reservoirs of fracture-dissolution pore type are high-quality reservoirs; the development of reservoirs is mainly controlled by the platform margin mound-shoal complexes, the penecontemporaneous interstratal karst, and two-stage weathering crust karstification as well as multi-stage disruptive actions; the upper part of the reservoir in the same stage is good, and the reservoir at the top of Deng 4 Member is good. (3) Before the Himalayan movement, the reservoir forming and the environments of the two platform margin mound-shoal complexes were the same, and the characteristics of the formation of the reservoir were similar. The Himalayan movement led to a great difference in the current buried depth of the reservoir, resulting in a host of fractures and retaining a host of dissolution pores and caverns. The whole platform margin mound-shoal complexes have large-scale reservoirs developed and have a good exploration prospect. The results enrich the theory of ancient and deep carbonate reservoir forming and its genetic mechanism and provide the geological basis for the deployment of exploration

    Studies on the two-photon pumped upconverted fluorescence and superradiance of a new organic dye material in solutions

    No full text
    The linear and nonlinear optical properties of a new organic dye, trans-4- [p-(N-ethyl-N-ethylamino)-styryl -N-methyl-pyridinium tris(thiocyanato) cadmates (II), are reported in this paper. When pumped with a picosecond laser at the wavelength range of 850] -1200 nm, intense upconversion fluorescence can be obtained. The upconversion efficiencies at different pump energies were measured when pumped with a 1064-nm laser beam from a mode-locked Nd:YAG laser. The highest upconversion efficiencies were measured to be 5.8% and 7.6% in dimethyl formamide (DMF) and methanol. The lifetime of the dye in DMF was measured to be 75 ps. The strongest nonlinear absorption was at the wavelength of 940 nm, and the highest upconversion efficiency was at the wavelength of 1030 nm. The difference of the two wavelengths was caused by excited state absorption in the dye at wavelengths shorter than 1000 nm. The dye solution in DMF and methanol show a clear optical power limiting effect

    Domino-Like Intercellular Delivery of Undecylenic Acid-Conjugated Porous Silicon Nanoparticles for Deep Tumor Penetration

    No full text
    Improving the intratumoral distribution of anticancer agents remains the critical challenge for developing efficient cancer chemotherapy. Luminescent porous silicon nanoparticles (PSiNPs) have attracted considerable attention in the biomedical field especially in drug delivery. Here, we described the lysosomal exocytosis-mediated domino-like intercellular delivery of undecylenic acid-conjugated PSiNPs (UA-PSiNPs) for deep tumor penetration. UA-PSiNPs with significantly improved stability in physiological conditions were internalized into tumor cells by macropinocytosis-, caveolae-, and clathrin-mediated endocytosis and mainly colocalized with Golgi apparatus and lysosomes. Substantial evidence showed that UA-PSiNPs was excreted from cells via lysosomal exocytosis after cellular uptake. The exocytosed UA-PSiNPs induced a domino-like infection of adjacent cancer cells and allowed encapsulated doxorubicin (DOX) to deeply penetrate into both three-dimensional tumor spheroids and <i>in vivo</i> tumors. In addition, DOX-loaded UA-PSiNPs exhibited strong antitumor activity and few side effects <i>in vivo</i>. This study demonstrated that UA-PSiNPs as a drug carrier might be applied for deep tumor penetration, offering a new insight into the design of more efficient delivery systems of anticancer drugs

    Spectral and temporal properties of two-photon pumped amplified spontaneous emission and cavity lasing of a new organic dye

    No full text
    The spectral and temporal properties of the two-photon absorption (TPA) fluorescence, amplified spontaneous emission (ASE) and cavity lasing of a new organic dye, trans-4-[p-(N-n-butyl-N-n-butylamino)-styryl]-N-methyl-pyridinium tris(thiocyanato)cadmates(II), in chloroform have been reported in this paper. The spectral modulation effect was observed in the TPA cavity lasing due to the multicavity structure of the cuvette. Obvious oscillations were observed in the temporal spectrum of the TPA cavity lasing with a total oscillation time of 200 ps. The lifetime of TPA fluorescence was measured to be 248 ps. The upconversion efficiencies of the TPA ASE of the dye in dimethyl formamide (DMF) at different pump energies were measured and the highest efficiency was ,4.8% at a pump energy of 4-6 mJ

    Smart pH/Redox Dual-Responsive Nanogels for On-Demand Intracellular Anticancer Drug Release

    No full text
    Efficient accumulation and intracellular drug release in cancer cells remain a crucial challenge in developing ideal anticancer drug delivery systems. Here, poly­(<i>N</i>-isopropylacrylamide)-<i>ss</i>-acrylic acid (P­(NIPAM-<i>ss</i>-AA)) nanogels based on NIPAM and AA cross-linked by <i>N,N’</i>-bis­(acryloyl)­cystamine (BAC) were constructed by precipitation polymerization. The nanogels exhibited pH/redox dual responsive doxorubicin (DOX) release behavior in vitro and in tumor cells, in which DOX release from nanogels was accelerated in lysosomal pH (pH 4.5) and cytosolic reduction (10 mM GSH) conditions. Moreover, intracellular tracking of DOX-loaded nanogels confirmed that after the nanogels and the loaded DOX entered the cells simultaneously mainly via lipid raft/caveolae-mediated endocytosis, DOX-loaded nanogels were transported to lysosomes and then the loaded DOX was released to nucleus triggered by lysosomal pH and cytoplasmic high GSH. MTT analysis showed that DOX-loaded nanogels could efficiently inhibit the proliferation of HepG2 cells. In vivo animal studies demonstrated that DOX-loaded nanogels were accumulated and penetrated in tumor tissues more efficiently than free DOX. Meanwhile, DOX-loaded nanogels exhibited stronger tumor inhibition activity and fewer side effects. This study indicated that pH/redox dual-responsive nanogels might present a prospective platform for intracellular drug controlled release in cancer therapy
    corecore