383 research outputs found

    Rosiglitazone and Cognitive Stability in Older Individuals With Type 2 Diabetes and Mild Cognitive Impairment

    Get PDF
    OBJECTIVE— Studies have suggested that insulin resistance plays a role in cognitive impairment in individuals with type 2 diabetes. We aimed to determine whether an improvement in insulin resistance could explain cognitive performance variations over 36 weeks in older individuals with mild cognitive impairment (MCI) and type 2 diabetes. RESEARCH DESIGN AND METHODS— A total of 97 older individuals (mean +/- SD age 76 +/-6 years) who had recently (< 2 months) started an antidiabetes treatment of metformin (500 mg twice a day) (n = 30) or metformin (500 mg/day)*rosiglitazone (4 mg/day) (n = 32) or diet (n = 35) volunteered. The neuropsychological test battery consisted of the Mini-Mental State Examination (MMSE), Rey Verbal Auditory Learning Test (RAVLT) total recall, and Trail Making Tests (TMT-A and TMT-B) performed at baseline and every 12 weeks for 36 weeks along with clinical testing. RESULTS— At baseline, no significant differences were found between groups in clinical or neuropsychological parameters. Mean +/- SD values in the entire population were as follows: A1C 7.5 +/- 0.5%, fasting plasma glucose (FPG) 8.6 +/- 1.3 mmol/l, fasting plasma insulin (FPI) 148 +/- 74 pmol/l, MMSE 24.9 +/- 2.4, TMT-A 61.6 +/- 42.0, TMT-B 162.8 +/- 78.7, the difference between TMT-B and TMT-A [DIFFBA] 101.2 +/- 58.1, and RAVLT 24.3 +/- 2.1. At follow-up, ANOVA models tested changes in metabolic control parameters (FPI, FPG, and A1C). Such parameters improved in the metformin and metformin/rosiglitazone groups (Ptrend < 0.05 in both groups). ANCOVA repeated models showed that results for the metformin/rosiglitazone group remained stable for all neuropsychological tests, and results for the diet group remained stable for the MMSE and TMT-A and declined for the TMT-B (Ptrend = 0.024), executive efficiency (DIFFBA) (Ptrend = 0.026), and RAVLT memory test (Ptrend = 0.011). Results for the metformin group remained stable for the MMSE and TMTs but declined for the RAVLT (Ptrend = 0.011). With use of linear mixed-effects models, the interaction term, FPI * time, correlated with cognitive stability on the RAVLT in the metformin/rosiglitazone group (beta = -1.899; P = 0.009)

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators
    corecore