184 research outputs found

    Turning Vice into Virtue : Using Batch-Effects to Detect Errors in Large Genomic Data Sets

    Get PDF
    It is often unavoidable to combine data from different sequencing centers or sequencing platforms when compiling data sets with a large number of individuals. However, the different data are likely to contain specific systematic errors that will appear as SNPs. Here, we devise a method to detect systematic errors in combined data sets. To measure quality differences between individual genomes, we study pairs of variants that reside on different chromosomes and co-occur in individuals. The abundance of these pairs of variants in different genomes is then used to detect systematic errors due to batch effects. Applying our method to the 1000 Genomes data set, we find that coding regions are enriched for errors, where similar to 1% of the higher frequency variants are predicted to be erroneous, whereas errors outside of coding regions are much rarer (Peer reviewe

    The Triglyceride Content in Skeletal Muscle Is Associated with Hepatic But Not Peripheral Insulin Resistance in Elderly Twins.

    Get PDF
    Context and Objective:Total muscle triglyceride (MT) content has been associated with insulin resistance. We investigated the predictors and impact of MT on relevant metabolic parameters including peripheral and hepatic insulin resistance in elderly twins.Design and Participants:Seventy-four elderly same-sex twins underwent hyperinsulinemic euglycemic clamps preceded by an iv glucose tolerance test. Aerobic capacity (VO(2max)) and body composition (dual-energy x-ray absorptiometry scan) were determined in all twins. A biopsy from the vastus lateralis muscle was excised in the fasting state. The muscle triacylglycerol content was analyzed by biochemical extraction from these biopsies.Results:The percentage of total body fat was the only independent predictor of MT content. After adjustment for trunk fat percentages and sex, MT level was significantly associated to fasting plasma levels of glucose and insulin as well as hepatic insulin resistance. However, the association was weakened after adjustment for total fat percentages. A 1 sd (34.5 mmol/kg dry weight) increase in MT content was associated with a 24% increase of hepatic insulin resistance. No association between MT content and peripheral insulin sensitivity was observed.Conclusion:MT content is associated with hepatic but not peripheral insulin resistance in elderly twins. We speculate that MT content may reflect the general ectopic accumulation of triglycerides, including fat in the liver

    Pathological Conditions Involving Extracellular Hemoglobin: Molecular Mechanisms, Clinical Significance, and Novel Therapeutic Opportunities for alpha(1)-Microglobulin

    Get PDF
    Hemoglobin is the major oxygen-carrying system of the blood, but has many potentially dangerous side effects due to oxidation and reduction reactions of the heme-bound iron and oxygen. Extracellular hemoglobin, resulting from hemolysis or exogenous infusion, is shown to be an important pathogenic factor in a growing number of diseases. This review briefly outlines the oxidative/reductive toxic reactions of hemoglobin and its metabolites. It also describes physiological protection mechanisms that have evolved against extracellular hemoglobin, with a focus on the most recently discovered: the heme- and radical-binding protein α1-microglobulin (A1M). This protein is found in all vertebrates including man and operates by rapidly clearing cytosols and extravascular fluids of heme groups and free radicals released from hemoglobin. Five groups of pathological conditions with high concentrations of extracellular hemoglobin are described: hemolytic anemias and transfusion reactions, the pregnancy complication preeclampsia, cerebral intraventricular hemorrhage of premature infants, chronic inflammatory leg ulcers, and infusion of hemoglobin-based oxygen carriers as blood substitutes. Finally, possible treatments of these conditions are discussed, giving special attention to the described protective effects of A1M

    Uncertainties on Central Exclusive Scalar Luminosities from the unintegrated gluon distributions

    Full text link
    In a previous report we used the Linked Dipole Chain model unintegrated gluon densities to investigate the uncertainties in the predictions for central exclusive production of scalars at hadron colliders. Here we expand this investigation by also looking at other parameterizations of the unintegrated gluon density, and look in more detail on the behavior of these at small k_T. We confirm our conclusions that the luminosity function for central exclusive production is very sensitive to this behavior. However, we also conclude that the available densities based on the CCFM and LDC evolutions are not constrained enough to give reliable predictions even for inclusive Higgs production at the LHC

    Relationship between insulin sensitivity and gene expression in human skeletal muscle

    Get PDF
    BackgroundInsulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood.MethodsTo explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR).ResultsWe identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g.PPARGC1A.ConclusionsThe muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g.SIRT2, and genes regulating autophagy and mTOR signaling, e.g.FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.Peer reviewe

    Low-cost exercise interventions improve long-term cardiometabolic health independently of a family history of type 2 diabetes : a randomized parallel group trial

    Get PDF
    Introduction To investigate the effect of an exercise prescription and a 1-year supervised exercise intervention, and the modifying effect of the family history of type 2 diabetes (FH), on long-term cardiometabolic health. Research design and methods For this prospective randomized trial, we recruited non-diabetic participants with poor fitness (n=1072, 30-70 years). Participants were randomly assigned with stratification for FH either in the exercise prescription group (PG, n=144) or the supervised exercise group (EG, n=146) group and compared with a matched control group from the same population study (CON, n=782). The PG and EG received exercise prescriptions. In addition, the EG attended supervised exercise sessions two times a week for 60 min for 12 months. Cardiometabolic risk factors were measured at baseline, 1 year, 5 years, and 6 years. The CON group received no intervention and was measured at baseline and 6 years. Results The EG reduced their body weight, waist circumference, diastolic blood pressure, and low-density lipoprotein-cholesterol (LDL-C) but not physical fitness (p=0.074) or insulin or glucose regulation (p>0.1) compared with the PG at 1 year and 5 years (p Conclusions Low-cost physical activity programs have long-term beneficial effects on cardiometabolic health regardless of the FH of diabetes. Given the feasibility and low cost of these programs, they should be advocated to promote cardiometabolic health.Peer reviewe

    Serology assessment of antibody response to SARS-CoV-2 in patients with COVID-19 by rapid IgM/IgG antibody test

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has created a global health- and economic crisis. Detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection. In this study, we applied a rapid COVID-19 IgM/IgG antibody test and performed serology assessment of antibody response to SARS-CoV-2. In PCR-confirmed COVID-19 patients (n = 45), the total antibody detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. The total IgM and IgG detection is 63% in patients with 2 weeks disease duration; and 91% in hospitalized patients with >2 weeks disease duration. We also compared different blood sample types and suggest a higher sensitivity by serum/plasma over whole blood. Test specificity was determined to be 97% on 69 sera/plasma samples collected between 2016-2018. Our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody detection patterns in association with disease progress and hospitalization. Our results support that the rapid COVID-19 IgM/IgG test may be applied to assess the COVID-19 status both at the individual and at a population level. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Peer reviewe

    Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease

    Get PDF
    There is emerging evidence of an association between epigenetic modifications, glycemic control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site (TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118, and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS. The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen (HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments. Pathway analysis revealed multiple activated pathways involved in immunity, including type 1 diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic disease.Peer reviewe
    corecore