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Abstract: There is emerging evidence of an association between epigenetic modifications, glycemic
control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in
patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin
immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in
peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without
T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND
and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site
(TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118,
and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic
locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS.
The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen
(HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments.
Pathway analysis revealed multiple activated pathways involved in immunity, including type 1
diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as
well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic
disease.

Keywords: type 1 diabetes; type 2 diabetes; histone modification; ChIP-seq; H3K9ac; TCF7L2; HLA

1. Introduction

Atherosclerosis accounts for more than 80% of deaths among patients with diabetes.
Strong evidence from large treatment studies, such as the United Kingdom Prospective
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Diabetes Study (UKPDS) and Diabetes Control and Complications Trial (DCCT), sup-
ports an association between glycemic control and cardiovascular disease (CVD) risk [1,2].
Animal and human studies have provided further evidence that prolonged exposure
to hyperglycemia induces alterations in vascular tissue that potentially accelerate the
atherosclerotic process [3,4]. The atherogenic role of glucose involves protein and lipid
glycosylation relevant to the atherosclerotic process, oxidative stress and protein kinase C
(PKC) activation [5]. There is also emerging evidence of associations between epigenetic
modifications and atherosclerosis risk.

Epigenetic mechanisms involve interactions between environmental factors (e.g.,
hyperglycemia) and gene expression via altering DNA methylation, non-coding RNAs,
and histone modifications. These processes may persist for a lifetime and even be heritable.
Histone acetylation contributes to the regulation of gene expression through its effect on
conformational changes in chromatin. Histone 3 lysine 9 (H3K9ac) is a frequently acetylated
site in active gene transcription under hyperglycemia. Previous investigations, including
our own studies, have shown that H3K9ac is an important modification for transcription
activity in glucotoxicity [6–8].

Histone acetylation is a dynamic process regulated by histone acetyl-transferases
(HATs) and histone deacetylases (HDACs), which add and remove acetyl groups, respec-
tively. HATs transfer acetyl groups generated from acetyl-coenzyme A (acetyl-CoA) to
lysine residues on histone tails. Glucose is one of the major sources for the production of
acetyl-CoA via the tricarboxylic acid cycle [9–12]; therefore, the availability of acetyl-CoA
and thereby acetyl groups, also contributes to the levels of histone acetylation. Previous
studies have shown that global histone acetylation levels in T2D patients are higher when
compared to healthy controls, and are often associated with increases in gene expres-
sion [9,13,14]. Glucose-induced H3K9ac is found to be involved in the upregulation of
glucotoxicity-related genes such as NF-kB and TXNIP in blood monocytes, pancreatic islet
cells and kidney cells [7,15,16]. Therefore, we hypothesized that epigenetic regulation by
H3K9ac could also be involved in T2D patients suffering from atherosclerosis.

In this study, we compared the genome-wide profiles of H3K9ac in peripheral blood
mononuclear cells (PBMCs) of atherosclerotic patients with or without T2D, to elucidate
key epigenetic mechanisms underlying T2D in atherosclerosis.

2. Materials and Methods
2.1. Carotid Plaque Imaging Project (CPIP) Cohort

The CPIP cohort is designed to study atherosclerosis and inflammatory or immune
markers to identify mechanisms in atherosclerotic plaques that lead to the development of
myocardial infarctions or strokes. The CPIP is an ongoing study since November 2005 that
recruits patients who undergo carotid endarterectomy at Lund University Hospital, Malmö,
Sweden. Blood samples were drawn from patients a day before the surgery. The criteria for
surgery are (1) stroke, transient ischemic attack or amaurosis fugax and a stenosis degree
(assessed by ultrasound) of >70%, or (2) no symptoms and a stenosis degree of >80%. For
the current study, we studied blood PBMCs from 18 patients with (n = 8) or without (n = 10)
T2D. The patients’ characteristics are summarized in Table 1. Serum C-peptide levels were
measured using ELISA (10-1136-01, Mercodia, Uppsala, Sweden).

All patients gave informed consent and the study has been approved by the Lund/
Malmö ethical committee (Approval Number and date: 472/2005-8 September 2005,
2014/904-14 December 2014). All experiments were performed in accordance with relevant
guidelines and regulations.
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Table 1. Categorical variables are expressed in total amount and percentages. Continuous variables as median and
interquartile range (IQR) or mean and standard deviation (SD). * BMI, body mass index. † hsCRP, high-sensitivity CRP. ‡

LDL, low-density lipoprotein. § HDL, high-density lipoprotein. || HbA1c, hemoglobin A1c, was available for 67% (n = 12)
of the cohort. Hypertension defined as: anti-hypertensive treatment or systolic pressure > 140 mmHg. Level of significance
between no diabetes and T2D patients is marked by *** p < 0.005.

All No T2D
(n = 10)

T2D
(n = 8)

Age, years (IQR) 69.5 (61.8–77.3) 69.5 (62.8–73.3) 69.5 (59.5–78.8)
Sex, males (%) 12 (67) 6 (60) 6 (75)

Smoking, current and previous/non
smokers (%) 16/2 (89/11) 9/1 (90/10) 7/1 (88/12)

BMI (IQR) * 26.8 (24.1–28.8) 26.4 (24.1–30.0) 27.0 (24.6–27.7)
C-peptide (pmol/L) 1558.5 (253.6–3666.2) 1471.0 (464.4–3588.4) 1668.0 (253.6–3666.2)

Degree of stenosis, % (IQR) 87.5 (78.8–90.0) 90 (83.4–91.3) 85 (71.3–90.0)
Hypertension, n(%) 14 (78) 9 (90) 5 (63)

Blood markers
hsCRP, mg/L (IQR) † 3.7 (2.7–5.0) 3.7 (2.5–4.7) 3.6 (2.2–6.0)

HbA1c, mmol/mol (IQR) || 49.5 (46.3–74.2) 45 (38–47) 64 (49–77) ***
Total cholesterol, mmol/L (IQR) 4.4 (3.7–5.4) 4.6 (3.8–5.0) 4.2 (3.4–6.0)

LDL, mmol/L (IQR) ‡ 2.6 (1.8–3.4) 2.2 (1.8–2.9) 2.7 (1.9–4.0)
HDL, mmol/L (IQR) § 1.0 (0.8–1.3) 1.1 (0.8–1.8) 1.0 (0.8–1.1)

Triglycerides, mmol/L (IQR) 1.7 (1.0–2.2) 1.6 (0.9–2.2) 1.7 (1.0–2.9)
Blood pressure lowering treatment, n(%)

RAS inhibitor 10 (56) 6 (60) 4 (50)
Beta blocker 10 (56) 7 (70) 3 (38)

Blood glucose lowering treatment, n(%)
Lifestyle changes 1 (6) - 1 (13)

Oral glucose lowering treatment 4 (22) - 4 (50)
Insulin only 0 (0) - 0 (0)

Insulin and oral glucose lowering 2 (11) - 2 (25)
Statin treatment, n(%) 18 (100) 10 (100) 8 (100)

2.2. PBMCs Isolation

Five milliliters of an EDTA-blood sample were used to isolate PBMC using Ficoll
Paque Plus (GE17-1440-02) density gradient centrifugation. The total volume of blood was
layered on 2.5 mL Ficoll Paque Plus and centrifuged at 1350× g for 10 min without braking
to form gradients. The upper most layer was plasma, followed by the PBMC cell layer,
the ficoll layer and granulocytes. Carefully, the PBMC layer was collected and washed
by adding 0.9% NaCl, centrifuged at 600× g for 10 min. The washing step was repeated
by adding NaCl, and followed by centrifugation at 300× g for 10 min. Finally, cells were
suspended in 500 µL autologous plasma and cells were counted using a Burkes chamber.
Cells were stored in freezing media containing 20% DMSO in RPMI1640 in liquid N2.

2.3. Chromatin Immunoprecipitation (ChIP)

ChIP was performed as previously described [7,17]. PBMCs were cross-linked by
formaldehyde (final concentration 1%) and sonicated by a Bioruptor sonicator (Diagenode,
Denville, NJ, USA) for 25 cycles of 30 s with a 30 s interval (medium intensity) period
between cycles. Genomic DNA fragment lengths of 200–1000 bp were achieved after
sonication. The lysates were then centrifuged, and the supernatants were collected. A 10%
volume of each sample was set aside as the input control. The sonicated chromatin was
incubated overnight at 4 ◦C with a 1 µg antibody binding to histone H3 lysine 9-acetylated
(H3K9ac, ab4441, Abcam, Cambridge, United Kingdom). DNA–protein complexes were
captured with 15 µL of 50% protein G beads, followed by reverse cross-linking and protease
K digestion. The DNA fragments were purified using a MinElute PCR Purification Kit
(Qiagen, Hilden, Germany).



Biomedicines 2021, 9, 1908 4 of 16

2.4. Library Preparation

The purified DNA was then processed including end repair: A-tailing and barcode
adapter ligation (Nextflex-HT barcodes 228-514174, Nextflex, San Jose, CA, USA). DNA
libraries were then sequenced on Illumina HiSeq 2000.

2.5. ChIP-Seq Analysis

ChIP seq was performed with 40 M effective reads. The ingroup standard deviation
among replicates was set at 10% of the average read density. ChIP-seq tags generated with
the Illumina HiSeq platform were de-multiplexed with the bcl2fastq utility and aligned to
the human reference genome (assembly NCBI37/hg19) using BWA v0.7.10, allowing up
to three mismatches per sequencing tag (default parameters). Peaks were detected using
MACS2 v2.1.1 (tag size = 100 bp; false discovery rate (FDR) <1 × 10−3) from pooled H3K9ac
tags of patients with each individual’s input tags as control. Within each pooled sample,
peaks whose termini were within 150 bp were merged into one peak. The MAnorm method
was then used to compare H3K9ac enrichment across the two study groups. MAnorm
took the coordinate of all peaks and aligned reads in both group samples as input. The (M,
A) value of each common peak was then calculated and plotted, where M = log2 (Read
density in sample 1/Read density in sample 2) and A = 0.5 × log2 (Read density in sample
1 × Read density in sample 2). A robust regression was subsequently applied to the (M,
A) values of all common peaks and a linear model was derived. Finally, the linear model
was extrapolated to all peaks for normalization. For each peak, a p-Value was calculated
to examine the statistical significance (<0.001) of read intensity difference between the
samples from the two groups. The p-value calculation was based on a Bayesian model
developed by Audic and Claverie [18]. The value of M describes the log2 fold change of the
read density at a peak region between two samples, and was used for downstream analysis
(i.e., ND vs. T2D). Scatter plots, histograms, and box plots of ChIP-seq data were visualized
using R software. Representative peaks at each gene that had significantly increased
or decreased enrichment were generated by IGV software (GNU LGPL open-source,
http://www.broadinstitute.org/igv (accessed on 28 September 2021), Broad Institute of
MIT and Harvard, Cambridge, MA, USA).

2.6. Statistical Analysis

Statistical analysis of ChIP-seq data was performed by a Welch’s test. A Mann–
Whitney test was used for clinical comparison of the patients from the ND and T2D groups.
p < 0.05 were considered to be statistically significant.

2.7. Data and Resource Availability

Data presented in this manuscript are available upon reasonable request to the cor-
responding authors, with the exception of sensitive data according to current GDPR
regulations.

3. Results
3.1. Genome-Wide Distribution of H3K9ac in Atherosclerosis Patients with T2D

To study the role of H3K9ac in atherosclerosis patients with T2D, we profiled the
genome-wide enrichment of H3K9ac by ChIP-seq in the PBMCs collected from patients
with T2D (n = 8) or without T2D (ND, n = 10), all with advanced atherosclerotic dis-
ease. The H3K9ac peaks in each group were detected by the MACS2 peak calling method
(FDR < 1 × 10−3). Differential peak enrichment was evaluated by assessing the enrich-
ment of the corresponding region in individual samples. ChIP-seq peak calling detected
23,394 peaks in subjects without T2D and 13,133 peaks in subjects with T2D (Figure 1A).
The difference in detected peaks indicates an overall decrease in the total number of H3K9ac
peaks in T2D, which suggests a downregulation of H3K9ac in the T2D condition. There are
12,380 peaks common to both ND and T2D individuals (Figure 1B). When the constitutive
peaks are compared to the remaining peaks in the T2D group, around 6% (753 peaks) of

http://www.broadinstitute.org/igv
http://www.broadinstitute.org/igv
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the peaks were redistributed in T2D, which may suggest different chromatin states in T2D
(Figure 1B). We then compared the enrichment of the constitutive H3K9ac peaks around
the transcriptional start sites (TSSs, ±1 kb), with that of the TSSs with no H3K9ac peaks.
The levels of H3K9ac acetylation at the TSSs of constitutive peaks and no peaks-calling
were both higher in T2D (Figure 1C,D). The TSSs of constitutive peaks showed a bimodal
distribution in both +1kb and −1kb around the TSS (Figure 1C). In the TSSs where no
H3K9ac peaks were called, distribution of H3K9ac acetylation was mostly enriched in +1kb
of the TSSs (Figure 1D).

3.2. The Dynamics of the H3K9ac Changes in T2D

Quantification and comparison of the number of peaks that were gained or lost in
ND and T2D showed 753 peaks gained in T2D, whereas no loss in peaks was detected
(Figure 1B). This analysis suggests that H3K9ac tends to gain in T2D. To better understand
the dynamics of the H3K9ac changes in T2D, we next performed quantitative measurements
of H3K9ac enrichment.
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Figure 1. H3K9ac is redistributed in atherosclerosis patients with T2D. (A) Bar plot of total number of H3K9ac peaks.
(B) Venn diagram of peak overlapping between ND (red) and T2D (blue). (C,D) H3K9ac enrichment at (C) TSSs (±1 kb) of
constitutive peaks; (D) TSS (± 1 kb) where no peak was detected.

Individual heterogeneity could potentially impact variable peaks; therefore, to ensure
that the observed trends were statistically significant, for each peak detected in ND or T2D
individuals, we quantified the corresponding area under the curve in each patient and
compared it with both ND and T2D groups. When comparing ND with T2D, we detected
80 peaks with a significant increase and 405 peaks with a significant decrease in H3K9ac
with T2D (p < 0.05, Welch’s t test; Figure 2A,B).

3.3. H3K9ac-Enriched Genomic Regions in T2D Coincide with Genetic Loci Associated with T2D
and Type 1 Diabetes (T1D)

We then mapped and profiled T2D H3K9ac enrichment in annotated genomic regions.
A comparison of ND and T2D H3K9ac enrichment revealed 181 genomic regions unique to
T2D (top 10 loci displayed in Tables 2 and 3; full gene list presented in Table S1). About
69.5% of the differentially enriched regions fall into intergenic regions; 24.2% in introns;
4% upstream and 0.8% downstream of the TSS; and 1.5% in exons (Figure 3A). Among
these genes, 118 displayed increased (Tables S1 and S2) and 63 showed decreased H3K9ac
enrichment in T2D (Table 3 and Table S1). Representative UCSC Genome browser track
views of H3K9ac changes are presented in Figure 3B–G (B–D: increased H3K9ac; and E–G:
decreased H3K9ac in T2D). The transcription factor 7-like 2 (TCF7L2) polymorphism at
rs7903146 is known to be highly associated with an increased risk for T2D from multiple
large population studies [19]. Here, we detected TCF7L2 rs7903146 as one of the loci with
the most highly increased H3K9ac enrichment in T2D (Table 2 and Figure 3D). Surprisingly,
several HLA genes were also identified among the most altered H3K9ac enrichments in T2D,
including HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB5, HLA-DQA1 and HLA-DQB1
(Table S1 and Figure 3).
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Table 2. Top genetic loci with increased H3K9ac enrichment in atherosclerosis patients with T2D.

Gene Symbol Peak Start Peak End M_Value_Rescaled A_Value_Rescaled −log10 (p-Value)

LOC100631378 38327931 38328189 −5.49 2.11 7.14
HCG4B 1188949 1189493 −3.34 3.92 8.81
CHRM2 136684799 136685143 −2.74 4.82 11.19

LOC349160 136684799 136685143 −2.74 4.82 11.19
TCF7L2 114757868 114758883 −2.66 18.27 Inf
HLA-C 2586205 2587065 −2.33 4.88 8.52

CATSPERB 92107659 92108000 −2.29 3.56 3.46
CECR2 18024490 18024867 −2.25 5.16 9.75
XKR6 10790323 10790692 −2.17 4.20 4.48
DPP6 154129998 154130240 −2.15 4.10 4.27

Table 3. Top genetic loci with decreased H3K9ac enrichment in atherosclerosis patients with T2D.

Gene Symbol Peak Start Peak End M_Value_Rescaled A_Value_Rescaled −log10 (p-Value)

GPSM3 3630151 3630907 5.33 2.66 Inf
RNF5P1 3616969 3617540 5.17 2.58 Inf

RNF5 3616969 3617540 5.17 2.58 Inf
APOM 3129514 3130353 4.78 2.39 Inf
BAG6 3129514 3130353 4.78 2.39 Inf
HCP5 2940084 2941136 4.21 2.10 5.72

SERF1B 70195996 70198315 4.03 2.02 5.18
SERF1A 70195996 70198315 4.03 2.02 5.18

ATP6V1G2-
DDX39B 2888815 2890051 3.83 3.50 10.29

DDX39B 2888815 2890051 3.83 3.50 10.29
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and E–G: decreased H3K9ac in T2D). The transcription factor 7-like 2 (TCF7L2) polymor-
phism at rs7903146 is known to be highly associated with an increased risk for T2D from 
multiple large population studies [19]. Here, we detected TCF7L2 rs7903146 as one of the 
loci with the most highly increased H3K9ac enrichment in T2D (Table 2 and Figure 3D). 
Surprisingly, several HLA genes were also identified among the most altered H3K9ac en-
richments in T2D, including HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB5, HLA-DQA1 
and HLA-DQB1 (Table S1 and Figure 3). 
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Representative UCSC Genome browser track views of H3K9ac changes in respective genes.

3.4. Regions of H3K9ac Changes Are Enriched for T2D Single-Nucleotide Polymorphisms (SNPs)

Genome-wide association studies (GWAS) in large population studies have led to
the discovery of T2D-associated genetic variants loci, e.g., PPARG and TCF7L2 [20,21].
The identified T2D SNPs are often located in non-coding regions and may colocalize with
enhancers and promoters that are subject to epigenetic regulations. Since H3K9ac has
been shown to be one of the major enhancer-associated chromatin modifications [22], we
aimed to explore the overlap between the H3K9ac enrichment changes that we identified
in T2D and the T2D SNPs that emerged from GWAS. To study this, we retrieved the GWAS
summary statistics from the DIAGRAM [23]. We applied INterval enRICHment analysis
(INRICH), an interval-based GWAS analysis tool, to map SNPs with their overlap regions
of H3K9ac changes. Notably, we found significant associations between the T2D-specific
H3K9ac enrichment that we identified and the T2D and T1D SNPs (Table 4). The most
significant SNP loci are at rs7903146 in TCF7L2 (p = 2.45E-39); and HLA SNPs including
HLA-B (p = 0.0004), HLA-DQB1 (p = 0.0006), HLA-DRB1 (p = 0.001), HLA-DRB5 (p = 0.01)
and HLA-DQA1 (p = 0.02) (Table 4). These data underscore the significant association of
H3K9ac changes in T2D with the GWAS SNPs. This relationship reinforced the biological
relevance of epigenetic changes to the genetic factors impacting T2D.

3.5. Functional Pathways Related to T2D-Specific H3K9ac Enrichment Changes

We next examined the functional pathways related to T2D-specific H3K9ac enrichment
changes. Categories of genes showing significantly increased or decreased H3K9ac (p < 0.05,
Welch’s t test) in T2D included pathways related to a response to allograft rejection, cell
adhesion molecules, ErbB signaling, T1D, autoimmune thyroid disease, graft-versus-host
disease, endocytosis, antigen processing and presentation, Wnt signaling pathway, etc.,
the majority of which are linked to immune responses (Table 5 and Table S3). It has been
suggested that hyperglycemia and oxidative stress in diabetes may accelerate the devel-
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opment of atherosclerosis; one mechanism for this could be via the promotion of immune
reactions [24]. Our results on epigenetic changes in the immune response pathways in
atherosclerotic patients with T2D may further support this view.

Table 4. T2D-associated genetic variant loci with overlap regions of H3K9ac changes.

GENE CHR START STOP ZSTAT p-Value

TCF7L2 10 114757867 114758883 13.07 2.45E-39
TCF7L2 10 114757868 114758883 13.07 2.45E-39
HLA-B 6 31322760 31325963 3.33 0.00044

HLA-DQB1 6 32631728 32636147 3.19 0.00070
HLA-B 6 31320376 31326175 3.09 0.0010

HLA-DRB1 6 32551226 32558284 3.04 0.0012
HCG27 6 31164981 31166290 2.96 0.0015

HLA-DRB1 6 32551453 32552934 2.89 0.0019
HCG27 6 31164908 31166411 2.87 0.0021
XKR6 8 10790323 10790692 2.33 0.0099

HLA-DRB5 6 32496119 32498185 2.23 0.011
MAGI1 3 65678931 65679421 1.95 0.026

HLA-DQA1 6 32604890 32606948 1.92 0.027
PKD2L1 10 102055647 102056160 1.88 0.030

CA5A 16 87933312 87933806 1.88 0.030
HLA-DQA1 6 32604815 32607091 1.85 0.032

DEPTOR 8 120994091 120994421 1.85 0.032

Table 5. Functional pathways related to T2D-specific H3K9ac enrichment changes.

Pathway Peak Related Genes with Pathway Annotation p-Value Q-Value

Allograft rejection 4 (4%) 0.00032 0.025
Cell adhesion molecules (CAMs) 7 (7%) 0.00050 0.025

ErbB signaling pathway 6 (6%) 0.00053 0.025
Type I diabetes mellitus 4 (4%) 0.00058 0.025

Autoimmune thyroid disease 4 (4%) 0.0010 0.029
Graft-versus-host disease 4 (4%) 0.0010 0.029

Endocytosis 9 (9%) 0.0017 0.043
Asthma 3 (3%) 0.0019 0.043

Acute myeloid leukemia 4 (4%) 0.0034 0.067
Intestinal immune network for IgA production 3 (3%) 0.0052 0.092

Antigen processing and presentation 4 (4%) 0.0074 0.11
Herpes simplex infection 6 (6%) 0.0078 0.11

Viral myocarditis 4 (4%) 0.0087 0.18
Aldosterone synthesis and secretion 4 (4%) 0.0099 0.12

Epstein–Barr virus infection 6 (6%) 0.012 0.15
Inflammatory bowel disease (IBD) 3 (3%) 0.015 0.16

Wnt signaling pathway 5 (5%) 0.016 0.16
Influenza A 6 (6%) 0.016 0.16

Endometrial cancer 3 (3%) 0.017 0.16
EGFR tyrosine kinase inhibitor resistance 4 (4%) 0.018 0.16

Cholinergic synapse 4 (4%) 0.019 0.16
PI3K-Akt signaling pathway 8 (8%) 0.021 0.17

HTLV-I infection 6 (6%) 0.024 0.18
Leishmaniasis 3 (3%) 0.025 0.18

Rheumatoid arthritis 3 (3%) 0.030 0.21
Inositol phosphate metabolism 3 (3%) 0.033 0.23

Dopaminergic synapse 4 (4%) 0.037 0.24
Systemic lupus erythematosus 4 (4%) 0.038 0.24

Proteoglycans in cancer 7 (7%) 0.041 0.25
MicroRNAs in cancer 5 (5%) 0.045 0.26
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4. Discussion

Our study presents the first genome-wide profile of histone acetylation in humans
affected with atherosclerosis and T2D. We performed ChIP-seq on PBMCs and traced the
natural changes in how the T2D condition affects the epigenetic profile of atherosclerosis.

Previous studies have elucidated DNA methylation alterations in atherosclerosis [25],
such as in vascular smooth muscle cells [26], aorta and coronary arteries [27], and aortic
endothelial cells [28], as well as non-coding RNAs as epigenetic regulators [29]. The role of
histone modification in atherosclerosis is, however, unclear. Several studies on cell lines
and animal models have linked histone modifications to proinflammatory gene expres-
sion in atherosclerosis (detailed review by Khyzha et al. [30]). In human atherosclerotic
plaques, changes in histone modifications were only supported by immunohistochemistry
findings [31,32]. In this study, we investigated changes in histone modifications in PBMCs
in association with atherosclerosis and T2D. PBMCs are clinically relevant cells with well-
established roles in different diseases and previous studies have shown that PBMCs may
provide disease-specific epigenetic signatures [33–36]. Therefore, an understanding of
epigenetic changes linked to diabetes and atherosclerosis of PBMCs may contribute to
identifying biologically promising epigenetic markers for pathogenesis of the diseases. To
the best of our knowledge, no previous study has been performed to investigate genome-
wide histone modification changes in atherosclerosis in humans, especially under diabetic
conditions.

In this study, we investigated the modification of H3K9ac due to its association with
T2D from previous studies. In T2D, despite the discovery of a large number of genetic
loci associated with T2D by GWAS, the identified variants only explain a small proportion
(~10%) of the heritability of T2D [37]. A growing body of evidence suggests that epige-
netic mechanisms may contribute to explain the “missing heritability” in T2D. Epigenetic
regulation via histone acetylation plays an important role in gene expression regulation
and H3K9ac is commonly linked with gene activation by allowing genomic regions access
to transcription machinery. In this study, we used ChIP-seq to map H3K9ac enrichment
in PBMCs in T2D and ND patients with advanced cerebrovascular atherosclerosis and
identified modifications at genomic regions unique to T2D. Notably, our analysis linked
these epigenetic changes in T2D with genetics and pathways related to immunity. It is
worth highlighting that we identified a genomic locus in TCF7L2 at rs7903146 as one of
the major sites for H3K9ac enrichment modifications in T2D. This specific locus in TCF7L2
has been shown in multiple large population studies to be strongly associated with T2D
risk [21]. Our novel finding, therefore, sheds light on the direct interaction between genetic
and epigenetic mechanisms in T2D susceptibility. This is in line with previous studies
where TCF7L2 rs7903146 was identified to be significantly associated with angiographically
diagnosed coronary artery disease (CAD) in the presence of T2D [38], and in PBMCs from
CAD patients, where TCF7L2 was identified as a key gene to be differentially expressed
in CAD patients with T2D [39]. At this stage, we do not know if the H3K9ac enrichment
pattern differs from risk- and non-risk-allele carriers at this specific locus, which requires
further investigations.

Another surprising finding from our study is that we also identified several loci in the
HLAs with most modifications in H3K9ac enrichment in T2D. Furthermore, we also found a
significant association between T2D H3K9ac enrichment and pathways related to immunity,
notably, T1D as one of the major identified pathways. The HLAs are reported to account
for up to 50% of the familial aggregation of T1D, with the major genetic determinants in
polymorphisms of class II HLA DQ and DR [40]. In our study, we identified several genetic
loci in HLA that have been associated with T1D to be the most differentially enriched in
H3K9ac, e.g., HLA-B, HLA-DQB1, HLA-DRB, HLA-DRB5, and HLA-DQA1. It has previously
been shown that there is no fundamental difference between the immune activation and
inflammation present in atherosclerosis among non-diabetics as compared to diabetics [24].
Albeit speculation, we may suggest that immune responses in T1D may also be operating
in T2D, or that the two disease conditions may share common pathways.
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Comparison of the ND vs. T2D ChIP-seq profile revealed a redistribution of H3K9ac
with T2D. Previous in vitro models mimicking hyperinsulinemia showed that high insulin
leads to a global increase in chromatin-associated histone acetylation, in particular at
H3K9 [41]. An earlier investigation on PBMCs in T1D also demonstrated association
between HbA1c level and H3K9ac enrichment [42]. In our study, all patients with T2D
were diagnosed based on glycemic levels. We may only speculate at this stage that the
epigenetic profile that we identified associated with T2D may be affected by both glucose
and/or insulin levels; this requires further investigations.

In conclusion, our study provides fine mapping of genome-wide histone acetylation
changes in patients with T2D and advanced atherosclerotic disease. By identifying loci
linked to T2D and T1D genetics, we revealed the potential mechanisms of epigenetic and
genetic interactions. Furthermore, we also suggest epigenetic modifications in pathways
related to immunity in T2D. These findings open the possibility that prevention of T2D-
dysregulation at the chromatin level may present novel therapeutic avenues for T2D.
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