1,178 research outputs found
Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback
Quantum measurements not only extract information from a system but also
alter its state. Although the outcome of the measurement is probabilistic, the
backaction imparted on the measured system is accurately described by quantum
theory. Therefore, quantum measurements can be exploited for manipulating
quantum systems without the need for control fields. We demonstrate
measurement-only state manipulation on a nuclear spin qubit in diamond by
adaptive partial measurements. We implement the partial measurement via tunable
correlation with an electron ancilla qubit and subsequent ancilla readout. We
vary the measurement strength to observe controlled wavefunction collapse and
find post-selected quantum weak values. By combining a novel quantum
non-demolition readout on the ancilla with real-time adaption of the
measurement strength we realize steering of the nuclear spin to a target state
by measurements alone. Besides being of fundamental interest, adaptive
measurements can improve metrology applications and are key to
measurement-based quantum computing.Comment: 6 pages, 4 figure
Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review
Peer reviewedPublisher PD
Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2
The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data
Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP
The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb
Measurement of triple gauge boson couplings from W⁺W⁻ production at LEP energies up to 189 GeV
A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻¹. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain κ = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Routine pattern discovery and anomaly detection in individual travel behavior
Discovering patterns and detecting anomalies in individual travel behavior is
a crucial problem in both research and practice. In this paper, we address this
problem by building a probabilistic framework to model individual
spatiotemporal travel behavior data (e.g., trip records and trajectory data).
We develop a two-dimensional latent Dirichlet allocation (LDA) model to
characterize the generative mechanism of spatiotemporal trip records of each
traveler. This model introduces two separate factor matrices for the spatial
dimension and the temporal dimension, respectively, and use a two-dimensional
core structure at the individual level to effectively model the joint
interactions and complex dependencies. This model can efficiently summarize
travel behavior patterns on both spatial and temporal dimensions from very
sparse trip sequences in an unsupervised way. In this way, complex travel
behavior can be modeled as a mixture of representative and interpretable
spatiotemporal patterns. By applying the trained model on future/unseen
spatiotemporal records of a traveler, we can detect her behavior anomalies by
scoring those observations using perplexity. We demonstrate the effectiveness
of the proposed modeling framework on a real-world license plate recognition
(LPR) data set. The results confirm the advantage of statistical learning
methods in modeling sparse individual travel behavior data. This type of
pattern discovery and anomaly detection applications can provide useful
insights for traffic monitoring, law enforcement, and individual travel
behavior profiling
Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP
Using the OPAL detector at LEP, the running of the effective QED coupling
alpha(t) is measured for space-like momentum transfer from the angular
distribution of small-angle Bhabha scattering. In an almost ideal QED
framework, with very favourable experimental conditions, we obtain:
Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X
10^-5, where the first error is statistical, the second is the experimental
systematic and the third is the theoretical uncertainty. This agrees with
current evaluations of alpha(t).The null hypothesis that alpha remains constant
within the above interval of -t is excluded with a significance above 5sigma.
Similarly, our results are inconsistent at the level of 3sigma with the
hypothesis that only leptonic loops contribute to the running. This is
currently the most significant direct measurment where the running alpha(t) is
probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
Physical Journal
- …