1,993 research outputs found

    Motion and gravitational radiation of a binary system consisting of an oscillating and rotating coplanar dusty disk and a point-like object

    Full text link
    A binary system composed of an oscillating and rotating coplanar dusty disk and a point mass is considered. The conservative dynamics is treated on the Newtonian level. The effects of gravitational radiation reaction and wave emission are studied to leading quadrupole order. The related waveforms are given. The dynamical evolution of the system is determined semi-analytically exploiting the Hamiltonian equations of motion which comprise the effects both of the Newtonian tidal interaction and the radiation reaction on the motion of the binary system in elliptic orbits. Tidal resonance effects between orbital and oscillatory motions are considered in the presence of radiation damping.Comment: 26 pages, 8 figure

    Scalar Dark Matter From Theory Space

    Get PDF
    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to dark matter. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass of order 100 GeV, the second region has a heavy candidate with a mass greater than about 500 GeV$. The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a WIMP (weakly interacting massive particle).Comment: 18 pages, 2 figures, version to appear in PR

    Arachidonic acid, arachidonic/eicosapentaenoic acid ratio, stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis)

    Get PDF
    Senegal sole larvae were fed live prey enriched with different amounts of arachidonic acid (ARA, 20:4n-6) and eicosapentaenoic acid (EPA, 20:5n-3) to re-evaluate the effect of these two fatty acids on flatfish pigmentation. Echium oil, a plant derived oil rich in gamma-linolenic acid (GLA, 18:3n-6) and stearidonic acid (SDA, 18:4n-3) was also used as a component of one of the enrichment emulsions. Although ARA content did not have any effect on growth there was a clear influence on pigmentation that correlated clearly with prostaglandin production. Inclusion of Echium oil, on the contrary, exerted a positive effect on pigmentation rate even though dietary ARA levels were as high as in the other emulsions. The relationships between dietary ARA levels and dietary ARA/EPA ratio, prostaglandin production and pigmentation are discussed

    Effect of intersubband scattering on weak localization in 2D systems

    Full text link
    The theory of weak localization is generalized for multilevel 2D systems taking into account intersubband scattering. It is shown that weak intersubband scattering which is negligible in a classical transport, affects strongly the weak-localization correction to conductivity. The anomalous magnetoresistance is calculated in the whole range of classically low magnetic fields. This correction to conductivity is shown to depend strongly on the ratios of occupied level concentrations. It is demonstrated that at relatively low population of the excited subband, it is necessary to use the present theory because the high-field limit asimptotics is shown to be achieved only in classical magnetic fields.Comment: 18 pages, 4 figures. Accepted to Phys. Rev. B 6

    Dirac Equation Studies in the Tunnelling Energy Zone

    Full text link
    We investigate the tunnelling zone V0 < E < V0+m for a one-dimensional potential within the Dirac equation. We find the appearance of superluminal transit times akin to the Hartman effect.Comment: 12 pages, 4 figure

    Application of time-dependent density functional theory to optical activity

    Get PDF
    As part of a general study of the time-dependent local density approximation (TDLDA), we here report calculations of optical activity of chiral molecules. The theory automatically satisfies sum rules and the Kramers-Kronig relation between circular dichroism and optical rotatory power. We find that the theory describes the measured circular dichroism of the lowest states in methyloxirane with an accuracy of about a factor of two. In the chiral fullerene C_76 the TDLDA provides a consistent description of the optical absorption spectrum, the circular dichroism spectrum, and the optical rotatory power, except for an overall shift of the theoretical spectrum.Comment: 17 pages and 13 PostScript figure

    Neutralino-Nucleon Cross Section and Charge and Colour Breaking Constraints

    Full text link
    We compute the neutralino-nucleon cross section in several supersymmetric scenarios, taking into account all kind of constraints. In particular, the constraints that the absence of dangerous charge and colour breaking minima imposes on the parameter space are studied in detail. In addition, the most recent experimental constraints, such as the lower bound on the Higgs mass, the bsγb\to s\gamma branching ratio, and the muon g2g-2 are considered. The astrophysical bounds on the dark matter density are also imposed on the theoretical computation of the relic neutralino density, assuming thermal production. This computation is relevant for the theoretical analysis of the direct detection of dark matter in current experiments. We consider first the supergravity scenario with universal soft terms and GUT scale. In this scenario the charge and colour breaking constraints turn out to be quite important, and \tan\beta\lsim 20 is forbidden. Larger values of tanβ\tan\beta can also be forbidden, depending on the value of the trilinear parameter AA. Finally, we study supergravity scenarios with an intermediate scale, and also with non-universal scalar and gaugino masses where the cross section can be very large.Comment: Final version to appear in JHE

    Potential Scattering in Dirac Field Theory

    Full text link
    We develop the potential scattering of a spinor within the context of perturbation field theory. As an application, we reproduce, up to second order in the potential, the diffusion results for a potential barrier of quantum mechanics. An immediate consequence is a simple generalization to arbitrary potential forms, a feature not possible in quantum mechanics.Comment: 7 page
    corecore