71 research outputs found

    IMP3 RNP safe houses prevent miRNA-directed <i>HMGA2</i> mRNA decay in cancer and development

    Get PDF
    Summary: The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient embryos show dose-dependent Hmga2 mRNA downregulation. Finally, IMP3 ribonucleoproteins (RNPs) contain other let-7 target mRNAs, including LIN28B, and a global gene set enrichment analysis demonstrates that miRNA-regulated transcripts in general are upregulated following IMP3 induction. We conclude that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression. : The RNA-binding protein IMP3 is associated with metastasis and poor outcome in human cancer. Jønson et al. now show that IMP3 RNPs function as cytoplasmic safe houses in preventing miRNA-directed mRNA decay of oncogenes such as HMGA2 and LIN28B during cancer and development. This explains why poor outcome is a hallmark of IMP3-positive tumors and demonstrates how posttranscriptional events can be involved in tumor progression

    GFP-Fragment Reassembly Screens for the Functional Characterization of Variants of Uncertain Significance in Protein Interaction Domains of the BRCA1 and BRCA2 Genes

    Get PDF
    Genetic testing for BRCA1 and BRCA2 genes has led to the identification of many unique variants of uncertain significance (VUS). Multifactorial likelihood models that predict the odds ratio for VUS in favor or against cancer causality, have been developed, but their use is conditioned by the amount of necessary data, which are difficult to obtain if a variant is rare. As an alternative, variants mapping to the coding regions can be examined using in vitro functional assays. BRCA1 and BRCA2 proteins promote genome protection by interacting with different proteins. In this study, we assessed the functional effect of two sets of variants in BRCA genes by exploiting the green fluorescent protein (GFP)-reassembly in vitro assay, which was set-up to test the BRCA1/BARD1, BRCA1/UbcH5a, and BRCA2/DSS1 interactions. Based on the findings observed for the validation panels of previously classified variants, BRCA1/UbcH5a and BRCA2/DSS1 binding assays showed 100% sensitivity and specificity in identifying pathogenic and non-pathogenic variants. While the actual efficiency of these assays in assessing the clinical significance of BRCA VUS has to be verified using larger validation panels, our results suggest that the GFP-reassembly assay is a robust method to identify variants affecting normal protein functioning and contributes to the classification of VUS

    A complex of BRCA2 and PP2A-B56 is required for DNA repair by homologous recombination

    Get PDF
    Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). BRCA2 acts by controlling RAD51 nucleoprotein filament formation on resected single-stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for efficient RAD51 filament formation at sites of DNA damage and HR-mediated DNA repair. Moreover, we find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and PP2A-B56 mutated cancers

    Distribution of <i>RET</i> Mutations in Multiple Endocrine Neoplasia 2 in Denmark 1994-2014:A Nationwide Study

    Get PDF
    Background: Germline mutations of the REarranged during Transfection (RET) proto-oncogene cause multiple endocrine neoplasia 2 (MEN2). It is unclear whether the distribution of RET mutations varies among populations. The first nationwide study of the distribution of RET mutations was conducted, and the results were compared to those of other populations. Methods: This retrospective cohort study included 1583 patients who underwent RET gene testing in one of three centers covering all of Denmark between September 1994 and December 2014. Primary testing method was Sanger sequencing, which included exons 8–11 and 13–16. Mutations were defined according to the ARUP database July 1, 2016. Results: RET mutations were identified in 163 patients from 36 apparently unrelated families. Among the 36 families 13 (36.1%) carried mutations in codon 611, four (11.1%) in codon 618, three (8.3%) in codon 620, one (2.8%) in codon 631, six (16.7%) in codon 634, one (2.8%) in codon 790, one (2.8%) in codon 804, one (2.8%) in codon 852, one (2.8%) in codon 883, and five (13.9%) in codon 918. Among the 13 families with codon 611 mutations, 12 had the p.C611Y mutation. Conclusions: The distribution of RET mutations in Denmark appears to differ from that of other populations. Mutations in codon 611 were the most prevalent, followed by more frequently reported mutations. This might be due to a possible founder effect for the p.C611Y mutation. However, further studies are needed to find possible explanations for the skewed mutational spectrum in Denmark

    BRCA1 and BRCA2 5′ noncoding region variants identified in breast cancer patients alter promoter activity and protein binding

    Get PDF
    © 2018 The Authors. Human Mutation published by Wiley Periodicals, Inc. The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5′ noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency \u3c 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C\u3eT and PAX5 binding to BRCA2:c.-296C\u3eT. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC

    Colorectal cancer incidences in Lynch syndrome: a comparison of results from the prospective lynch syndrome database and the international mismatch repair consortium

    Get PDF
    Objective To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants. Methods CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands. Results In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17% and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8% and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups. Conclusions Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so

    ENIGMA CHEK2gether Project: A Comprehensive Study Identifies Functionally Impaired CHEK2 Germline Missense Variants Associated with Increased Breast Cancer Risk

    Get PDF
    PURPOSE: Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). EXPERIMENTAL DESIGN: We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1-CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case-control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. RESULTS: A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)-like (N = 226). We then examined their association with breast cancer risk in the case-control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35-3.41), 1.57 (95% CI, 1.41-1.75), and 1.19 (95% CI, 1.08-1.31), respectively. The meta-analysis of population-specific datasets showed similar results. CONCLUSIONS: We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as
    corecore