49,902 research outputs found

    Nearly-logarithmic decay in the colloidal hard-sphere system

    Full text link
    Nearly-logarithmic decay is identified in the data for the mean-squared displacement of the colloidal hard-sphere system at the liquid-glass transition [v. Megen et. al, Phys. Rev. E 58, 6073(1998)]. The solutions of mode-coupling theory for the microscopic equations of motion fit the experimental data well. Based on these equations, the nearly-logarithmic decay is explained as the equivalent of a beta-peak phenomenon, a manifestation of the critical relaxation when the coupling between of the probe variable and the density fluctuations is strong. In an asymptotic expansion, a Cole-Cole formula including corrections is derived from the microscopic equations of motion, which describes the experimental data for three decades in time.Comment: 4 pages, 3 figure

    Relaxation in a glassy binary mixture: Mode-coupling-like power laws, dynamic heterogeneity and a new non-Gaussian parameter

    Full text link
    We examine the relaxation of the Kob-Andersen Lennard-Jones binary mixture using Brownian dynamics computer simulations. We find that in accordance with mode-coupling theory the self-diffusion coefficient and the relaxation time show power-law dependence on temperature. However, different mode-coupling temperatures and power laws can be obtained from the simulation data depending on the range of temperatures chosen for the power-law fits. The temperature that is commonly reported as this system's mode-coupling transition temperature, in addition to being obtained from a power law fit, is a crossover temperature at which there is a change in the dynamics from the high temperature homogeneous, diffusive relaxation to a heterogeneous, hopping-like motion. The hopping-like motion is evident in the probability distributions of the logarithm of single-particle displacements: approaching the commonly reported mode-coupling temperature these distributions start exhibiting two peaks. Notably, the temperature at which the hopping-like motion appears for the smaller particles is slightly higher than that at which the hopping-like motion appears for the larger ones. We define and calculate a new non-Gaussian parameter whose maximum occurs approximately at the time at which the two peaks in the probability distribution of the logarithm of displacements are most evident.Comment: Submitted for publication in Phys. Rev.

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD) Volume 7: IPAD benefits and impact

    Get PDF
    The potential benefits, impact and spinoff of IPAD technology are described. The benefits are projected from a flowtime and labor cost analysis of the design process and a study of the flowtime and labor cost savings being experienced with existing integrated systems. Benefits in terms of designer productivity, company effectiveness, and IPAD as a national resource are developed. A description is given of the potential impact of information handling as an IPAD technology, upon task and organization structure and people who use IPAD. Spinoff of IPAD technology to nonaerospace industries is discussed. The results of a personal survey made of aerospace, nonaerospace, government and university sources are given

    Dynamical transition of glasses: from exact to approximate

    Full text link
    We introduce a family of glassy models having a parameter, playing the role of an interaction range, that may be varied continuously to go from a system of particles in d dimensions to a mean-field version of it. The mean-field limit is exactly described by equations conceptually close, but different from, the Mode-Coupling equations. We obtain these by a dynamic virial construction. Quite surprisingly we observe that in three dimensions, the mean-field behavior is closely followed for ranges as small as one interparticle distance, and still qualitatively for smaller distances. For the original particle model, we expect the present mean-field theory to become, unlike the Mode-Coupling equations, an increasingly good approximation at higher dimensions.Comment: 44 pages, 19 figure

    Mode-Coupling Theory as a Mean-Field Description of the Glass Transition

    Get PDF
    Mode-coupling theory (MCT) is conjectured to be a mean-field description of dynamics of the structural glass transition and the replica theory to be its thermodynamic counterpart. However, the relationship between the two theories remains controversial and quantitative comparison is lacking. In this Letter, we investigate MCT for monatomic hard sphere fluids at arbitrary dimensions above three and compare the results with replica theory. We find grave discrepancies between the predictions of two theories. While MCT describes the nonergodic parameter quantitatively better than the replica theory in three dimension, it predicts a completely different dimension dependence of the dynamical transition point. We find it to be due to the pathological behavior of the nonergodic parameters derived from MCT, which exhibit negative tails in real space at high dimensions.Comment: 5 pages, to appear in Phys. Rev. Lett.: Typos have been correcte

    North Atlantic Deep Water Formation

    Get PDF
    Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling

    A critical test of the mode-coupling theory of the glass transition

    Full text link
    The mode-coupling theory of the glass transition predicts the time evolution of the intermediate scattering functions in viscous liquids on the sole basis of the structural information encoded in two-point density correlations. We provide a critical test of this property and show that the theory fails to describe the qualitatively distinct dynamical behavior obtained in two model liquids characterized by very similar pair correlation functions. Because we use `exact' static information provided by numerical simulations, our results are a direct proof that some important information about the dynamics of viscous liquids is not captured by pair correlations, and is thus not described by the mode-coupling theory, even in the temperature regime where the theory is usually applied.Comment: 7 pages, 5 figures

    Kinetic Theory for Electron Dynamics Near a Positive Ion

    Full text link
    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron - ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron - electron and electron - ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single particle trajectories of the electron - ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron - ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron - ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas.Comment: 30 pages, 5 figures, submitted to Journal of Statistical Mechanics: Theory and Experimen

    Theory of ice premelting in porous media

    Full text link
    Premelting describes the confluence of phenomena that are responsible for the stable existence of the liquid phase of matter in the solid region of its bulk phase diagram. Here we develop a theoretical description of the premelting of water ice contained in a porous matrix, made of a material with a melting temperature substantially larger than ice itself, to predict the amount of liquid water in the matrix at temperatures below its bulk freezing point. Our theory combines the interfacial premelting of ice in contact with the matrix, grain boundary melting in the ice, and impurity and curvature induced premelting, the latter occurring in regions which force the ice-liquid interface into a high curvature configuration. These regions are typically found at points where the matrix surface is concave, along contact lines of a grain boundary with the matrix, and in liquid veins. Both interfacial premelting and curvature induced premelting depend on the concentration of impurities in the liquid, which, due to the small segregation coefficient of impurities in ice are treated as homogeneously distributed in the premelted liquid. Our principal result is an equation for the fraction of liquid in the porous medium as a function of the undercooling, which embodies the combined effects of interfacial premelting, curvature induced premelting, and impurities. The result is analyzed in detail and applied to a range of experimentally relevant settings.Comment: 14 pages, 10 figures, accepted for publication in Physical Review

    Multi-scale coarse-graining of diblock copolymer self-assembly: from monomers to ordered micelles

    Full text link
    Starting from a microscopic lattice model, we investigate clustering, micellization and micelle ordering in semi-dilute solutions of AB diblock copolymers in a selective solvent. To bridge the gap in length scales, from monomers to ordered micellar structures, we implement a two-step coarse graining strategy, whereby the AB copolymers are mapped onto ``ultrasoft'' dumbells with monomer-averaged effective interactions between the centres of mass of the blocks. Monte Carlo simulations of this coarse-grained model yield clear-cut evidence for self-assembly into micelles with a mean aggregation number n of roughly 100 beyond a critical concentration. At a slightly higher concentration the micelles spontaneously undergo a disorder-order transition to a cubic phase. We determine the effective potential between these micelles from first principles.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett
    • …
    corecore