Starting from a microscopic lattice model, we investigate clustering,
micellization and micelle ordering in semi-dilute solutions of AB diblock
copolymers in a selective solvent. To bridge the gap in length scales, from
monomers to ordered micellar structures, we implement a two-step coarse
graining strategy, whereby the AB copolymers are mapped onto ``ultrasoft''
dumbells with monomer-averaged effective interactions between the centres of
mass of the blocks. Monte Carlo simulations of this coarse-grained model yield
clear-cut evidence for self-assembly into micelles with a mean aggregation
number n of roughly 100 beyond a critical concentration. At a slightly higher
concentration the micelles spontaneously undergo a disorder-order transition to
a cubic phase. We determine the effective potential between these micelles from
first principles.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett