167 research outputs found

    Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs

    Get PDF
    Cyanobacteria have a long evolutionary history that has been instrumental in allowing them to adapt to long-term geochemical and climatic changes, as well as current human and climatic alterations of aquatic ecosystems; e.g. nutrient over-enrichment, hydrologic modifications and warming. Harmful (toxic, hypoxia-generating, food web altering) cyanobacterial bloom (CyanoHAB) genera are particularly adept at taking advantage of these changes and perturbations. In addition, they have developed numerous mutualistic and symbiotic associations with other microbes and higher flora and fauna, and they modulate positive biogeochemical feedbacks, instrumental in their survival and dominance in diverse ecosystems. CyanoHABs are controlled by the combined and often synergistic effects of nutrient (nitrogen and phosphorus) inputs, light, temperature, water residence/flushing times, and biotic interactions. Accordingly, mitigation strategies are oriented towards manipulating these dynamic factors. Physical, chemical (nutrient) and biological manipulations can be effective in reducing CyanoHABs. However, these manipulations should also be accompanied by nutrient (both nitrogen and phosphorus in most cases) input reductions to ensure long-term success and sustainability. A major research and management goal for long-term control of CyanoHABs is to develop strategies that are adaptive to climatic variability and change, because nutrient-CyanoHAB thresholds are likely to be altered in a climatically more extreme world

    Elevated organic carbon pulses persist in estuarine environment after major storm events

    Get PDF
    Estuaries regulate transport of dissolved organic carbon (DOC) from land to ocean. Export of terrestrial DOC from coastal watersheds is exacerbated by increasing major rainfall and storm events and human activities, leading to pulses of DOC that are shunted through rivers downstream to estuaries. Despite an upward trend of extreme events, the fate of the pulsed terrestrial DOC in estuaries remains unclear. We analyzed the effects of seven major tropical cyclones (TC) from 1999 to 2017 on the quantity and fate of DOC in the Neuse River Estuary (NC, USA). Significant TC-induced increases in DOC were observed throughout the estuary; the increase lasting from around 50 d at head-of-tide to over 6 months in lower estuary. Our results suggest that pulsed terrestrial DOC associated with TCs temporarily overwhelms the estuarine filter's abiotic and biotic degradation capacity under such high flow events, enhancing the shunt of terrestrial carbon to the coastal ocean.Non peer reviewe

    Impacts of Seasonality and Nutrients on Microbial Mat Community Structure and Function

    Get PDF
    To understand the mechanisms responsible for seasonal fluctuations in growth and N2 fixation in intertidal microbial mat communities, we quantified seasonal changes in mat community composition, related these changes to diel and seasonal N2 fixation rates, and evaluated community responses (growth, N2fixation, composition) to long-term (22 d) nutrient addition bioassays. A temperate intertidal cyanobacterial mat community, located in coastal North Carolina, USA, was sampled at monthly intervals for 1 yr (1993-94) to determine changes in community composition. The abundances of major phototrophic groups were quantified based on the relative concentrations of taxaspecific photopigments (chlorophylls and carotenoids). The most abundant phototrophs were cyanobacteria, diatoms, and photosynthetic bacteria. Mat blomass and community composition underwent marked changes on both monthly and seasonal scales and corresponded with seasonal shifts in the diel patterns of N2 fixation. Diatom biomass increased during periods of low N2 fixation. Nutrient (nitrate and phosphate) addition bioassays indicated that both cyanobacterial and diatom growth were N limited. Cyanobacteria were able to circumvent N limitation by N2 fixation. The addition of high concentrations of N (100µM NaNO3) in combination with P (100 µM NaH2P04) resulted in an increase (163%) in the relative abundance of diatoms The addition of P alone more than doubled N2 fixation rates and cyanobacterial abundance increased (+34%) relative to diatoms. However, N and NP additions significantly lowered (by more than 75%) N2 fixation rates. Here we show that manipulative experiments, together with quantitative assessments of community composition based on chemotaxonomic pigments, can provide useful insights into the mechanisms that relate mat community structure and function to environmental constraints, including nutrient limitation and seasonal climatic changes

    Moving towards adaptive management of cyanotoxin-impaired water bodies

    Get PDF
    The cyanobacteria are a phylum of bacteria that have played a key role in shaping the Earth's biosphere due to their pioneering ability to perform oxygenic photosynthesis. Throughout their history, cyanobacteria have experienced major biogeochemical changes accompanying Earth's geochemical evolution over the past 2.5+ billion years, including periods of extreme climatic change, hydrologic, nutrient and radiation stress. Today, they remain remarkably successful, exploiting human nutrient over-enrichment as nuisance "blooms." Cyanobacteria produce an array of unique metabolites, the functions and biotic ramifications of which are the subject of diverse ecophysiological studies. These metabolites are relevant from organismal and ecosystem function perspectives because some can be toxic and fatal to diverse biota, including zooplankton and fish consumers of algal biomass, and high-level consumers of aquatic food sources and drinking water, including humans. Given the long history of environmental extremes and selection pressures that cyanobacteria have experienced, it is likely that that these toxins serve ecophysiological functions aimed at optimizing growth and fitness during periods of environmental stress. Here, we explore the molecular and ecophysiological mechanisms underlying cyanotoxin production, with emphasis on key environmental conditions potentially controlling toxin production. Based on this information, we offer potential management strategies for reducing cyanotoxin potentials in natural waters; for cyanotoxins with no clear drivers yet elucidated, we highlight the data gaps and research questions that are still lacking. We focus on the four major classes of toxins (anatoxins, cylindrospermopsins, microcystins and saxitoxins) that have thus far been identified as relevant from environmental health perspectives, but caution there may be other harmful metabolites waiting to be elucidated

    Fish Kills and Bottom-Water Hypoxia in the Neuse River and Estuary: Reply to Burkholder et al.

    Get PDF
    Burkholder et al. (1999) authored a comment in Manne Ecology Progress Series (MEPS) that selectively criticizes elements of our findings that appeared earlier in the same journal (Paerl et al. 1998). For the benefit of the readership of MEPS, it would have been useful to have had both their comment and our reply in the same volume. Unfortunately, we were not informed of their comment pnor to its publication

    Ecosystem Responses to Internal and Watershed Organic Matter Loading: Consequences for Hypoxia in the Eutrophying Neuse River Estuary, North Carolina, USA

    Get PDF
    The contrasting impacts of externally supplied (runoff) and internally generated (nutrient stimulated phytoplankton blooms) organic matter on oxygen (02) depletion were examined and evaluated in the eutrophic, salinity-stratified Neuse River Estuary, North Carolina, USA. This nitrogen (N)- limited estuary is experiencing increasing anthropogenic N loading from expanding urban, agricultural and industrial development in its watershed. Resultant algal blooms, which provided organic matter loads capable of causing extensive low 02 (hypoxic) and depleted 02 (anoxic) conditions, have induced widespread mortality of resident fin- and shellfish. Phytoplankton blooms followed periods of elevated N loading, except during extremely high runoff periods (e.g. hurricanes), when high rates of flushing and reduced water residence times did not allow sufficient time for bloom development. During these periods, hypoxia and anoxia were dominated by watershed-derived organic matter loading. Externally vs internally generated organic matter loading scenarios were examined in sequential years (1994 to 1996) to compare the differential impacts of an average discharge year (l0 yr mean hydrological conditions) (1994), N-stimulated summer algal blooms [1995), and a major hurricane (Fran; September 1996). The responses of primary production, hypoxia, and anoxia to these hydrologically contrasting years and resultant organic matter loadings help distinguish watershed from internal forcing of 02 dynamics and fish kills

    Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries

    Get PDF
    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3mmolCm(-2)d(-1) in the NeuseRE and NewRE, respectively. Large-scale pCO(2) variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO(2) undersaturation was observed at intermediate freshwater ages, between 2 and 3weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations. Plain Language Summary Estuaries release nearly as much CO2 to the atmosphere as is taken up over the continental shelf. However, estuarine emissions vary greatly across space and time, contributing significantly to the uncertainty of global carbon budgets. In this study, we assess spatial and temporal variability in CO2 emissions from adjacent estuaries in North Carolina, USA. These emissions varied across seasons and river discharge conditions but were relatively small when assessed as annual averages. Freshwater age (time freshwater spends in estuary before being flushed to ocean) was an important driver of CO2 dynamics in both estuaries, due to its role in regulating nutrient, DOC, and DIC supply while also affecting the rate at which phytoplankton are flushed from the system. While the relationship between freshwater age and CO2 was similar for both estuaries, we show that the various external and internal inputs of CO2 were quite different. Riverine CO2 inputs drove CO2 emissions in the river-dominated estuary, while internally produced CO2 (from community respiration) was more important in the marine-dominated estuary. We also demonstrate that poorly buffered regions in both estuaries are particularly vulnerable to acidification, with potentially negative impacts on calcifying organisms

    Dynamics of atmospheric combined inorganic nitrogen utilization in the coastal waters off North Carolina

    Get PDF
    Phytoplankton in nitrogen-depleted coastal Atlantic waters off North Carolina, USA, had a positive response to nitrogen added as rain (DIN: NO3- and NH4+) or directly as NO3- or NH4+. Increases in primary production, photopigments, and cellular protein concentrations were observed when nitrogen Limitation was alleviated. NO3- concentrations decreased faster than those of NH4+ in 670 l mesocosm experiments, performed in October 1993 and March and April 1994. Stable nitrogen isotope measurements (delta(15)N) Of particulate N typically showed similar responses to the nitrogen additions. The delta(15)N decreased as the different DIN sources, having delta(15)N values near 0 parts per thousand, were incorporated into cell biomass. The smallest changes (about 1 parts per thousand) occurred in the Delta(15)N (delta(15)N(initial) - delta(15)N(final)) from nitrate additions. A greater shift of about 2 parts per thousand was observed with added DIN from rain, even though delta(15)N Of total DIN was similar. Ammonium additions resulted in the largest difference from the control, about 6 to 7 parts per thousand. This fractionation is indicative of isotopic fractionation during enzymatic incorporation and active transport of ammonium into the cells. In parallel incubations, C-14-bicarbonate was added along with rain in addition to all N additions and controls. Subcellular C-14-labeled fractions from these samples showed a short-term response to nitrogen additions and included an increase in the low molecular weight fraction after the first light incubation (from dawn to dusk). Carbon was allocated into protein after a 24 h period that encompassed the night incubation

    Impact of rainwater hydrogen peroxide on chlorophyll a content of surface Gulf Stream seawater off North Carolina, USA

    Get PDF
    Bioassays indicate addition of hydrogen peroxide in concentrations similar to rain sometimes decreases chlorophyll a (chl a) production in surface Gulf Stream seawater. Bioassays were conducted on shipboard in the spring and autumn of 1993, 1994, and 1995, using surface Gulf Stream seawater collected off the coast of North Carolina. Chl a increases were observed after addition of FeCl3(in 1 of 5 bioassays), iron (III) EDTA (6 of 6 bioassays), or EDTA alone (4 of 4 bioassays). The chl a increases were suppressed significantly in 7 of 1 1 of these bioassays when the bioassay seawater was initially diluted by 1% with a 30 or 40 μM solution of hydrogen peroxide (a concentration similar to rainwater). Hydrogen peroxide induced inhibition of chl a production was not observed in bioassays in which chl a increased in response to addition of nitrate or ammonium, hence the growth inhibition was associated with added metal or complexing agent. Rainwater therefore plays a complex role in primary productivity in surface seawater, with the specific effect dependent upon rainwater concentrations of nitrate, ammonium, trace metals and hydrogen peroxide, as well as on the extent of nitrogen limitation and the oxidant concentration in the surface seawater
    • …
    corecore