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Cyanobacteria have a long evolutionary history that has been instrumental in allowing them to adapt to long-term
geochemical and climatic changes, as well as current human and climatic alterations of aquatic ecosystems; e.g.
nutrient over-enrichment, hydrologic modifications and warming. Harmful (toxic, hypoxia-generating, food web
altering) cyanobacterial bloom (CyanoHAB) genera are particularly adept at taking advantage of these changes and
perturbations. In addition, they have developed numerous mutualistic and symbiotic associations with other
microbes and higher flora and fauna, and they modulate positive biogeochemical feedbacks, instrumental in their
survival and dominance in diverse ecosystems. CyanoHABs are controlled by the combined and often synergistic
effects of nutrient (nitrogen and phosphorus) inputs, light, temperature, water residence/flushing times, and biotic
interactions. Accordingly, mitigation strategies are oriented towards manipulating these dynamic factors. Physical,
chemical (nutrient) and biological manipulations can be effective in reducing CyanoHABs. However, these manipu-
lations should also be accompanied by nutrient (both nitrogen and phosphorus in most cases) input reductions to
ensure long-term success and sustainability. A major research and management goal for long-term control of
CyanoHABs is to develop strategies that are adaptive to climatic variability and change, because nutrient-
CyanoHAB thresholds are likely to be altered in a climatically more extreme world.
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INTRODUCTION

Cyanobacteria were the first oxygen-evolving phototrophs
on Earth, having made their appearance well over 2.5 billion
years ago (Knoll, 2008). Today, they remain an important

and at times dominant component of the phytoplankton,
with specific taxa as key indicators of declining water quality
as harmful (toxic, hypoxia-generating, food web altering)
blooms or CyanoHABs (Fig. 1).

Fig. 1. Examples of globally distributed harmful cyanobacterial blooms (CyanoHABs). (a) Lake Taihu (NASA-MODIS), China. (b) Lake
Atitlan, Guatamala (NASA Earth Observatory). (c) Lake Erie, USA-Canada (NASA-MODIS). (d) Ichetucknee Springs, Florida, USA (H. Paerl).
(e, f) Lake Taihu, China (H. Paerl). (g) Zaca Lake, California, USA (A. Wilson). (h, i) St. Johns River, Florida (J. Burns). (j) Liberty Lake,
Washington, USA (Liberty Lake Sewer and Water District). (k) Canal near Haarlem, the Netherlands (H. Paerl), (l) Lagoon near St. Lucie River,
Florida (Ft. Pierce News Tribune).
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From an evolutionary perspective, cyanobacteria
“invented” oxygenic photosynthesis, a quantum step in
shaping the Earth’s modern-day oxic biosphere. This
capability opened up diverse aquatic habitats for cyano-
bacterial colonization, ranging from the open ocean to
alpine lakes, spanning polar to tropical climes (Potts and
Whitton, 2000). Cyanobacteria have also developed the
ability to survive and at times flourish in physically and
chemically extreme environments. This capability is
most likely attributed to their long evolutionary history,
during which cyanobacteria experienced major climatic
changes and extremes on geological timescales. These
included ice ages, periods of extreme heat, desiccation,
volcanism and altered incident solar radiation. Diverse
cyanobacterial taxa exhibit widespread adaptations to
these extremes, including the formation of heat and
desiccation-tolerant resting cells or akinetes, desiccation-
resistant sheaths and capsules. They also have highly
effective photoprotective (including UV protective) cel-
lular pigments (Paerl et al., 1985), and can rapidly
migrate throughout the water column by regulating
their buoyancy, enabling them to optimize their position
with regard to vertical light and nutrient gradients (Potts
and Whitton, 2000; Huisman et al., 2005; Paerl and
Otten, 2013a). They can take advantage of periodic
nutrient-rich conditions by rapidly taking up and storing
(as polyphosphate granules) phosphorus (P) and nitrogen
(N) (as N-rich phycobilin pigments). They can cope with
nutrient deplete conditions, including the ability to con-
vert or “fix” atmospheric nitrogen (N2), sequester (by
chelation) iron (Wilhelm and Trick, 1994; Huisman
et al., 2005; Paerl and Otten, 2013a). Cyanobacteria
produce a wide array of secondary metabolites (Paul

et al., 2007), thought to counter stressful environmental
conditions, such as photooxidation and osmotic stress
(Paerl and Otten, 2013a, 2013b) Lastly, cyanobacteria
participate in associations with other microorganisms as
well as higher plants and animals that provide mutual ben-
efits and protection under adverse and stressful environ-
mental conditions (Paerl, 1982; Paerl and Millie, 1996).

These attributes make cyanobacteria well-adapted to
aquatic ecosystems undergoing human and climatically
driven environmental change, including anthropogenic
nutrient over-enrichment (eutrophication) and hydro-
logic modifications (e.g. water withdrawal, construction
of dams and reservoirs) (Huisman et al., 2005; Paerl and
Otten, 2013a). In addition, warming, more intense and
frequent storms, and extreme droughts, appear favor-
able for CyanoHAB proliferation in diverse aquatic
environments (Paerl and Huisman, 2008, 2009) (Fig. 2).

NUTRIENTS AND
EUTROPHICATION

We have long recognized the connection between
human nutrient over-enrichment, eutrophication and
CyanoHAB expansion (Huisman et al., 2005; Paerl and
Otten, 2013a). Traditional approaches for addressing
the “CyanoHAB problem” have focused on reducing
phosphorus (P) inputs, based on the fact that excessive P
relative to N inputs (or low N:P ratios) were correlated
with a tendency of receiving waters to be dominated
by cyanobacterial biomass (Smith, 1983). This relation-
ship was in part attributed to the fact that some
CyanoHAB genera (e.g. Aphanizomenon, Cylindrospermopsis,

Fig. 2. Conceptual diagram, illustrating multiple interacting environmental factors controlling harmful cyanobacterial blooms. Figure adapted
from Paerl et al. (Paerl et al., 2011).
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Dolichospermum, Nodularia) can “fix” atmospheric N2 into
biologically available NH3, thus potentially supporting
N requirements of CyanoHAB-impacted ecosystems
(Schindler et al., 2008). However, recent analysis of data
from CyanoHAB-impacted lakes indicates that N2 fixers
do not provide enough biologically available N to satisfy
ecosystem-scale N requirements (Scott and McCarthy,
2010; Paerl et al., 2016a). This indicates that externally
supplied N plays a critical role in supporting ecosystem
N requirements and eutrophication.

Much has changed, nutrient loading wise, since the
1960–1970s when the “P input control” paradigm was
introduced. While efforts have been focused on reducing
P inputs since then, and many such efforts were success-
ful in stemming a rise in cyanobacterial bloom activity
during that period, N loads have increased dramatically
in watersheds and airsheds globally, due to the acceler-
ating use of synthetic N fertilizers, increasing amounts of
N-enriched urban and rural wastewaters, stormwater
runoff, and increased atmospheric N deposition from
fossil fuel combustion and agricultural emissions. We
are literally ‘awash’ in anthropogenic N (Galloway et al.,
2002), and the CyanoHABs that have aggressively
responded to this N “glut” are largely non-N2 fixing (i.e.
requiring exogenous N supplies) genera such as
Microcystis and Planktothrix. Furthermore, it should be
noted that aquatic ecosystems can to some extent purge
themselves of gaseous N2 via denitrification, while P
does not have a gaseous form that can escape. This
leads to a situation where much of the P supplied to
impacted systems remains there as “legacy P”, cycling
between sediments and the water column, while these
systems remain N deficient and open to watershed and
airshed inputs of “new” biologically available N (Paerl
et al., 2016a, 2016b).

Given the observed proliferation of non-diazotrophic
CyanoHABs, and recent findings of N-limited and N +
P co-limited receiving waters worldwide, recent studies
have advocated that both N and P reductions are likely
needed in the “long haul” to stem eutrophication and
CyanoHABs (Elser et al., 2007; Conley et al., 2009;
Lewis et al., 2011; Paerl et al., 2016a, 2016b).

GLOBAL WARMING

Today, the Earth is experiencing significant climatic
changes and extremes, with warming as the most wide-
spread and pervasive symptom (IPCC, 2014); with pro-
found effects on the activities, distributions, and
survivability of many plant and animal species (Walther
et al., 2002). Virtually everywhere the globe is warming,

but the symptoms are most obvious in temperate and
high latitude regions, where temperatures have
increased most rapidly over both seasonal and inter-
annual timescales. This has extended both the period-
icity and range of cyanobacterial species (Jöhnk et al.,
2008; Paul, 2008; Kosten et al., 2012). Warmer tem-
peratures favor surface bloom-forming cyanobacterial
genera, because they are well-adapted to hot conditions,
with maximal growth rates occurring at relatively high
temperatures, often in excess of 25°C (Paerl and
Huisman, 2008; Paerl et al., 2011). Considering growth
rates, at these elevated temperatures, cyanobacteria can
compete most effectively with eukaryotic algae. Warmer
surface waters are also prone to more intense vertical strati-
fication, which would favor buoyant CyanoHAB taxa.
In marine systems, salinity gradients also induce strati-

fication. As mean temperatures rise as a result of climate
change, both fresh- and marine waters will stratify earl-
ier in the spring, and stratification tends to persist longer
into the fall (Paul, 2008; Paerl and Huisman, 2009;
Paerl and Paul, 2012). High latitude regions, lakes, riv-
ers and estuarine ecosystems have shown most profound
warming of surface waters, leading to earlier “ice out”
and later “ice on” periods and stronger vertical tem-
perature stratification. This is thought to be responsible
for expansion of latitudinal range of cyanobacterial spe-
cies and blooms (Paul, 2008; Kosten et al., 2012), evident
in lakes in northern Europe and North America, some
of which no longer have ice on them during wintertime
(Wiedner at al., 2007; Wagner and Adrian, 2009).
Increasing temperatures, combined with vertical

stratification will increase respiration and oxygen con-
sumption. This can directly affect the magnitude, dur-
ation and spatial extent of low oxygen (hypoxia and
anoxia) conditions in hypolimnetic bottom waters, which
in turn will be enhanced under more strongly stratified
conditions. Increased hypoxia (<2 mg L−1 O2) and
anoxia (~0 mg L−1 O2) will benefit cyanobacteria over
eukaryotic algae because the former are tolerant to
H2S, which can accumulate under these conditions.
Furthermore, motile CyanoHAB species are able to take
advantage of these conditions by periodically utilizing
soluble (and hence utilizable) hypolimnetic supplies of
phosphorus, nitrogen, iron and trace metals. After “dip-
ping” into nutrient-rich hypolimnetic waters and taking
up and potentially storing nutrients (e.g. polyphosphates,
phycobilins), they can subsequently be utilized to sup-
port growth and bloom formation in surface waters.
Typically, strongly stratified hypoxic and anoxic condi-
tions are most frequent and severe during summer
months, when absolute temperatures are highest; and
when blooms and their metabolic activities (including
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O2 consumption) are maximal. Microbial and larger
invertebrate biomass and grazing rates are generally
highest in the summer months. Increased grazer activity
also promotes nutrient regeneration and cycling, which
enhances nutrient availability and sustenance of cyano-
bacterial blooms during this period when nutrient limi-
tation is usually most intense (Paerl and Millie, 1996).

INCREASED HYDROLOGIC
VARIABILITY

Climate change is also increasing variability and extre-
meness of the amounts and patterns of precipitation.
Storm events, including tropical cyclones, nor’easters,
and summer thunderstorms, are becoming more
extreme, with higher amounts and intensities of rainfall
(Trenberth, 2005; IPCC, 2014). Droughts are also
intensifying and more persistent (Trenberth, 2005).
From an aquatic ecosystem perspective, this is leading
to more extreme freshwater events accompanied by
large nutrient input pulses, much of it coming from
increasing diffuse, non-point sources, such as agricul-
tural urban and rural runoff. If followed by more exten-
sive, pervasive droughts, conditions will be optimal for
cyanobacterial dominance and bloom development. If
this scenario develops during the transition from spring
to summer warming, cyanobacteria will particularly
benefit because as a group their growth rates are opti-
mized at relatively high temperatures (Paerl and
Huisman, 2009; Paerl et al., 2011).
Larger freshwater runoff events also promote

enhanced vertical density stratification. Stronger vertical

stratification will favor phytoplankton capable of vertical
migration to position themselves at physically chemically
optimal depths (Paerl and Huisman, 2009). CyanoHAB
species able to rapidly alter their buoyancy in response
to varying light, temperature and nutrient regimes
would be favored under these conditions (Walsby et al.,
1997). Surface CyanoHABs can avoid being grazed by
zooplankton, which often avoid these waters due to
excessive irradiance and the potential of being preyed
upon by planktivorous fish. Lastly, sub-surface algal taxa
will be shaded by dense surface blooms, leaving them at
sub-optimal light conditions (Fig. 2)

SYNERGISM, FEEDBACKS AND
CYANOBACTERIAL DOMINANCE

Thermal and hydrologic, bioactivity and diversity
changes accompanying climatic changes operate in a
synergistic fashion; that is, their effects are additive in
promoting growth, activity and dominance of
CyanoHABs. This is accomplished through a series of
positive feedback “loops” that jointly promote bloom
development, intensity and maintenance (Fig. 3). This
scenario is described below.

Generally, bloom-forming cyanobacteria are not
effectively grazed due to inedibility and toxicity, while
non-cyanobacterial phytoplankton taxa are readily
grazed (Paerl et al., 2001; Ghadouani et al., 2003).
Nutrient regenerating activities associated with selective
grazing and bacterial metabolism tend to favor bloom-
forming cyanobacterial genera, at a time of the year
(summer months) when these genera are already

Fig. 3. Conceptual diagram, showing the synergistic interactions and feedback loops between nutrient supply, freshwater flow (flushing/resi-
dence time), temperature and vertical stratification and CyanoHAB growth potential in a eutrophic system experiencing anthropogenic nutrient
loading and climatically driven (altered freshwater flow, warming) environmental change.
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selectively favored by elevated temperatures. In add-
ition, the enhanced O2 consumption, nutrient cycling
and CyanoHAB production associated with grazing will
tend to promote bottom water hypoxia, which is further
promoted by intensification of vertical temperature
stratification and nutrient-rich anoxic bottom waters,
thereby ensuring a source of nutrients needed to sustain
blooms, while eukaryotic algae will be shut off from this
nutrient source due to their inability to tolerate sulfide.
This “winning” scenario can be maintained during sum-
mer bloom periods if intense vertical stratification
persists.

In a sense, this constitutes a positive feedback scen-
ario, where blooms, once established, can perpetuate
their dominance through enhanced nutrient recycling
supported by the bloom biomass, which can cycle
through several “bloom and bust” periods where the
organic matter from senescent or dying blooms drives
nutrient regeneration in hypolimnetic waters. This in
turn can support new blooms, as long as warm,
adequate light conditions prevail. In this manner bloom
succession can persist for the entire spring-through fall
growing season in temperate zones and throughout the
entire year in the tropics. Unless major flushing events
or persistent cold periods associated with vertical mixing
occur, there is little environmental pressure to break
these cycles; in essence, CyanoHABs can determine
their own destiny unless an unpredictable and significant
climatic or hydrologic perturbation takes place.

CYANOHAB RESEARCH AND
MANAGEMENT CHALLENGES IN
A CLIMATICALLY MORE
EXTREME WORLD

Ecosystem level, physical, chemical and biotic regulatory
variables often co-occur and interact synergistically and
antagonistically to control the activities (e.g. N2 fixation,
photosynthesis) and growth of CyanoHABs (Huisman
et al., 2005; Paerl and Otten, 2013a). Breaking this syn-
ergism would be desirable as a means of controlling
CyanoHABs. Effective and achievable means of control-
ling blooms include: (i) nutrient input reduction and
manipulation (e.g. altering N:P ratios) (Paerl and Otten,
2013a; Paerl, 2014), (ii) applications of algaecides,
including copper sulfate and more environmentally
friendly hydrogen peroxide (Matthijs et al., 2012), (iii)
altering nutrient cycling by chemical binding of nutri-
ents (Robb et al., 2003), (iv) clay algal flocculation treat-
ments (Sengco and Anderson, 2004), (v) disrupting
vertical stratification, through either mechanically or

hydrologically induced vertical mixing (Visser et al.,
1996), (vi) reducing retention time (increasing flushing)
of bloom-impacted waters (Mitrovic et al., 2003) and (vii)
biological manipulation (Jeppesen et al., 2007). Options
(ii) through (vii) have been used in small impoundments,
such as ponds and small reservoirs. These approaches
often are neither practical nor effective in larger systems,
or waters to be used for fishing, drinking water and
other animal and human use purposes. If the bloom-
affected water body is small and accessible enough for
installing destratification equipment, option (iii) may be
feasible. If abundant low nutrient water supplies (i.e.
upstream reservoirs) are available for hydrodynamic
manipulative (flushing) purposes, option (vi) may be pos-
sible. Biological manipulation (vii) includes a number of
approaches to change the aquatic food web to increase
grazing pressure on cyanobacteria or to reduce recycling
of nutrients. Biomanipulation approaches can include
introducing fish and benthic bivalve mollusk filter fee-
ders capable of consuming cyanobacteria. The most
common biomanipulation approaches are intended to
increase the abundance of herbivorous zooplankton by
removing zooplanktivorous fish or introducing (by stock-
ing) piscivorous fish (Jeppesen et al., 2007), an approach
most commonly used in tropical systems. Alternatively,
removal of benthivorous fish can reduce resuspension of
nutrients from the bottom sediments.
Questions have been raised about the long-term effi-

cacy of curtailing cyanobacterial blooms by increasing
grazing pressure, because this may lead to dominance
by ungrazable or toxic strains (McQueen, 1990;
Ghadouani et al., 2003). Several aspects of biological
control need further clarification. In particular, more
detailed studies of the population dynamics within
cyanobacterial blooms are needed. For example, com-
petition between toxic and non-toxic strains affects the
toxicity of cyanobacterial blooms (Kardinaal et al.,
2007). More detailed studies are needed in case of
changes in toxicity within one species/strain of cyano-
bacteria, depending on environmental conditions.
Lastly, viruses may attack cyanobacteria, and mediate
bloom development and succession (Honjo et al., 2006).
How these processes are affected by global warming is,
as yet, unknown.
Presently, biomanipulation is viewed as one compo-

nent of an integrated approach to water quality man-
agement in circumstances in which nutrient reductions
alone are insufficient to restore water quality (Paerl
et al., 2016b). Otherwise, option (i) (nutrient manage-
ment) is the most practical, economically feasible, envir-
onmentally friendly, long-term option.
It is noted that many of the physical–chemical–biotic

management procedures presented above are quite
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drastic and can have major side effects on ecosystem
function (e.g. habitat alterations, which could alter bio-
geochemical cycling, biodiversity and food web interac-
tions). Therefore, minimal disruption of ecosystem
processes should be practiced, or the “cure” to
CyanoHABs may be worse than the symptoms. The
most prudent “bottom line” approach for long-term
CyanoHAB control is to practice reductions in external
nutrient (both N and P) inputs, regardless of any other
management procedure under consideration or being
implemented.

CLIMATICALLY ALTERED
BLOOM THRESHOLDS

It is very likely that changes in climatic conditions and
extremes will lead to altered relationships between fresh-
water discharge and flushing rates (residence times),
nutrient inputs and ratios (N:P), temperature, water col-
umn stability and stratification, sedimentation and sedi-
ment resuspension, and clarity (turbidity), all of which
will impact cyanobacterial growth rates, biomass and
bloom intensities, successional patterns and competitive
interactions with other phytoplankton groups (Fig. 4).
These important growth, biomass production and

community compositional characteristics will strongly
rely on changing threshold relationships between envir-
onmental drivers and metabolic and growth responses
of resident phytoplankton communities. For cyanobac-
teria, faster growth rates and nutrient transformation
and hence availability rates can be expected under
warming conditions. It follows that demands on nutrient
supplies will increase under such a scenario. Respiration
and mineralization rates will also increase, leading to
increasing oxygen demand and rising potentials for hyp-
oxia and anoxia to develop. Also, stronger vertical strati-
fication is likely to occur, increasing hypoxia and anoxia
potentials. In concert, these changing conditions will
promote mobilization of phosphorus and nitrogen as
well as most micronutrients (e.g. Fe, and a range of

trace metals) from sediments, which will, in addition to
changing the kinetic relationships between nutrient con-
centrations, supply rates and cyanobacterial growth
rates, lead to enhanced growth and bloom potentials.
This constitutes a positive feedback loop between rising
temperatures, increased CyanoHAB potentials and the
nutrients to sustain them.

Likewise, larger, more extreme rainfall events, inter-
spersed with more extreme droughts create a “perfect
storm” scenario, where the former will lead to increased
rates and amounts of nutrients discharged to a water
body, with the latter creating increased water column
stability and longer residence times (reduced flushing
rates); the combined effect being an increase in magni-
tudes and duration of blooms.

It is likely that in a warmer, more hydrologically vari-
able and extreme world, nutrient input reductions will
have to be greater than under more predictable, season-
ally stable conditions for CyanoHAB control. Particular
emphasis will need to be placed on controlling diffuse
non-point nutrient sources, such as agricultural, urban
and rural stormwater runoff, as they will be most
severely impacted by a predictably more “flashy” pat-
tern of rainfall events (Trenberth, 2005). The extent to
which nutrient input reductions will need to be adjusted
will likely be system-specific, creating additional research
and management challenges.

CONCLUSIONS

The synergistic combination of anthropogenic nutrient
loading, rising temperatures, enhanced vertical stratifi-
cation, increased residence time and more extreme cli-
matic conditions overall will favor cyanobacterial
dominance in a wide range of aquatic ecosystems (Paerl
and Paul, 2012). Ecosystem-scale physical–chemical–
biotic mitigation strategies will have to incorporate
nutrient (most often N and P) input reductions.
Magnitudes of these reductions will need to be system-
specific and will likely need to be adjusted with changing

Effects on CyanoHABs

Global warming

Episodic events

Hydrologic variability

Human nutrient inputs

Water temperature

Flushing rates

Nutrient loads

Nutrient ratio changes

Sedimentation (turbidity)

Drivers Ecosystem Responses

Fig. 4. The relationship between human and climatic environmental pressures on aquatic ecosystems, ecosystem responses and their effects on
CyanoHABs. Figure is adapted from Paerl (Paerl, 2014).
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climatic conditions. Research and management efforts
will have to consider and accommodate warming and
greater hydrologic variability and extremeness resulting
from climate change in formulating their strategies. A
key long-term control we can exert to reduce the rate
and extent of global warming is curbing greenhouse gas
emissions. Without this essential step, future warming
trends, hydrologic extremes and their impacts on
aquatic ecosystems will continue to promote opportunis-
tic CyanoHABs.
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