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ABSTRACT: Bioassays indicate addition of hydrogen peroxide in concentrations similar to rain some- 
times decreases chlorophyll a (chl a) production in surface Gulf Stream seawater. Bioassays were con- 
ducted on shipboard in the spring and autumn of 1993, 1994, and 1995. using surface Gulf Stream sea- 
water collected off the coast of North Carolina. Chl a increases were observed after addition of FeC13 
(in 1 of 5 bioassays), iron (111) EDTA (6 of 6 bioassays), or EDTA alone (4 of 4 bioassays). The chl a 
increases were suppressed significantly in 7 of 11 of these bioassays when the bioassay seawater was 
initially diluted by 1 % with a 30 or 40 p M  solution of hydrogen peroxide (a concentration similar to 
rainwater). Hydrogen peroxide induced inhibition of chl a production was not observed in bioassays in 
wh~ch  chl a increased in response to addltion of nitrate or ammonium, hence the growth inhibition was 
associated with added metal or complexing agent. Rainwater therefore plays a complex role in primary 
productivity in surface seawater, with the specific effect dependent upon rainwater concentrations of 
nitrate, ammonium, trace metals and hydrogen peroxide, as well as on the extent of nitrogen limitation 
and the oxidant concentration in the surface seawater. 
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INTRODUCTION 

The Gulf Stream, with oligotrophic surface water, 
flows close to the North Carolina coast (40 to 100 km), 
and so may be influenced by continental inputs trans- 
ported via the atmosphere. Rainwater concentrations 
of the phytoplankton nutrients nitrate and ammonium 
vary substantially in this region (Willey & l e f e r  1993), 
as do concentrations of the photochemical oxidant 
hydrogen peroxide (Willey et al. 1996). Hence, rain 
from different storms may have different impacts upon 
surface waters (Willey & Cahoon 1991, Willey & Paerl 
1993). 

Elevated concentrations of hydrogen peroxide have 
been observed in surface seawater for days following 

rain events (Cooper et al. 1987, Miller & Kester 1994). 
A light rain caused seawater hydrogen peroxide to 
almost double in concentration to a depth of 4 m; 
model calculations indicate that increases could occur 
down to 50 m during major storms (Cooper et al. 1987). 
Hydrogen peroxide occurs in the gas phase in concen- 
trations reaching several parts per billion in the study 
area (DeForest et al. 1997); gas exchange is also a 
source of hydrogen peroxide to surface seawater 
(Thompson & Zafiriou 1983). Gas phase concentrations 
of hydrogen peroxide may increase in the near future 
due to changing climate and atmospheric composition 
(Thompson et al. 1989, Thompson 1992). If surface sea- 
water concentrations of hydrogen peroxide increase, 
the solubility, speciation, and bioavailability of many 
trace metals, including both micronutrients and toxins, 
could be affected. 
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Depending on concentrations, the trace metals iron, 
molybdenum, manganese, zinc, copper, cobalt and 
nickel are all seawater micronutrients. Iron, molybde- 
num, manganese and copper occur in more than 1 oxi- 
dation state, and different oxidation states can have 
solubilities that vary by many orders of magnitude. 
Hydrogen peroxide concentrations affect the solubili- 
ties of several of these metals through varied oxidation 
and reduction reactions. For example, hydrogen per- 
oxide is a dominant oxidant for Fe(I1) in seawater (Mof- 
fett & Zika 1987, Millero & Sotolongo 1989), an impor- 
tant reductant for Cu2+ (Moffett & Zika 1983, 1987) and 
is involved in the Mn02(s)-Mn2+ (aq) photochemical 
cycle (Sunda et  al. 1983, Sunda 1988-89). 

Many trace metals, including Cd, Pb, Zn, Cu, Ni, V, 
Fe and Mn are thought to be elevated in rain relative to 
crustal concentrations (Church et  al. 1984, 1991, Jick- 
ells et al. 1984), and several of these occur in more than 
1 oxidation state in aqueous solution. Rain therefore is 
a delivery mechanism to seawater for many trace met- 
als (Duce et al. 1991, Jickells 1995), as well as a solu- 
bility-altering environment for certain trace metals. 
The objective of this study is to investigate whether 
rainwater hydrogen peroxide can alter chlorophyll a 
(chl a) production in surface Gulf Stream seawater 
through modification of trace metal bioavailability. 

METHODS 

Experimental. Six bioassays were conducted be- 
tween June 1993 and September 1995 using olig- 
otrophic Gulf Stream surface seawater (Table 1) col- 
lected within an  18 km radius of 33" 42' N and 76" 05' W 
(off the coast of North Carolina) during cruises of the 
RV 'Cape Hatteras'; exact locations depended upon 
the variable position of the Gulf Stream. Three bioas- 
says were conducted in June and November of 1993, 
and May of 1994, with continental shelf surface sea- 
water (salinities 35.2, 35.9 and 35.6%0 respectively) ap- 
proximately 100 km northwest of the Gulf Stream 

station. Bioassays were conducted using methods 
described extensively in Paerl et al. (1990), Willey & 
Cahoon (1991), Willey & Paerl (1993) and Paerl et al. 
(1994). Briefly, bioassay seawater was incubated at sea 
surface temperature (k2"C) in 4 l polyethylene Cubi- 
tainers for 2 to 3 d wlth light intensity controlled to 
approximately 50% of incident by neutral density 
screening. At the end of each bioassay, 3.5 1 of bioassay 
seawater was filtered (Whatman GF/F) and the filters 
were frozen and later analyzed fluorometrically for 
chl a (Strickland & Parsons 1972). Cubitainers were 
rinsed with 1 % HCl, followed by several rinses with 
the experimental seawater prior to use. These Cubi- 
tainers had been found to be 80 % transparent to pho- 
tosynthetically active radiation (Paerl et  al. 1990). Sea- 
water for the bioassays was collected from 2.7 m using 
the ship's non-metallic PVC pumping system and pip- 
ing. The pumping system was run for at least 2 h with 
the experimental seawater before bioassay containers 
were filled. Cubitainers were filled in random order. 
The many positive growth responses observed in these 
bioassays and in those done at the same times reported 
in Paerl et al. (in press) indicate that the potential for 
plankton growth was maintained with these experi- 
mental procedures. 

Six separate Cubitainers containing unaltered sea- 
water served as controls in each bioassay. Several dif- 
ferent additions were made (each with 3 replicates) to 
seawater in the various experiments. Fe(I1I)EDTA 
(formed from FeC13 and EDTA) was added to achieve a 
concentration of 0.20 PM, except for the June 1993 
bioassays which had additions of Fe(lI1)EDTA of 
0.50 PM, and the September 1995 bioassays which 
used a range of concentrations from 0.01 to 0.20 PM. 
FeC13 and EDTA were also added separately in certain 
bioassays, to achieve a concentration of 0.20 PM. The 
EDTA was free of iron and other trace metals (K. Bru- 
land pers. comm.); ultra pure FeC13 (Fisher) was used 
to prepare the Fe(II1)EDTA. Both the Fe(II1)EDTA and 
EDTA alone should be chemically stable throughout 
the experimental time frame, salinity, and light 

Table 1. Bioassay dates and initial seawater values for sahnity (L), temperature ("C), hydrogen peroxide (PM), ammonium (pM), 
phosphate (PM), and silicate (pM). Initial nitrate concentrations were <0.2 pM (June 1993 was not analyzed). Chl a (pg I-') con- 
centrations are from the controls after the experiment; these correspond to the 100% value for the controls in the figures. NA = 

not analyzed 

Date Sal. Temp. [H2021 [NH,'] [HPO4'-] [H4Si04] [Chl a] 
(560) ("C) (PM) (PM (PM (PM (!Jg 1-'1 

15-17 J u ~  1993 35.9 26.6 0.187 N A N A 1.24 0.025 
11-12 NOV 1993 36.2 25.1 0.1.35 0.21 0.51 N A 0.339 
7-9 May 1994 36.2 22.0 0.483 0.54 0.02 1.42 0.008 
16-18 NOV 1994 36.1 27.2 0.320 0.08 0.03 1.13 0.187 
6-9 May 1995 36.1 23.7 0.422 1.15 0.39 0.94 0.030 
20-23 Sep 1995 36.2 28.8 0.283 <0.02 0.04 1.29 0.048 
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regimes of these experiments (Lockhart & Blakeley 
1975, Hudson et al. 1992, Xue et al. 1995), and also 
should not provide biologically available nitrogen to 
these experiments (Alder et al. 1990). 

Fe(III)EDTA, EDTA, or FeC13 (0.20 pM) and hydro- 
gen peroxide were added to certain bioassays. In the 
hydrogen peroxide additions, seawater containing the 
added Fe(III)EDTA, EDTA, or FeC13 was diluted by 1 % 
with a 30 pM (November 1993) or 40 pM (all other 
bioassays) solution of hydrogen peroxide in Millipore 
Plus Ultra Pure 18 MQ deionized water, which 
increased the bioassay seawater hydrogen peroxide 
concentration by 0.30 or 0.40 pM. Seawater with only 
hydrogen peroxide added at these levels showed no 
effect on chl a content. The concentration of hydrogen 
peroxide was measured initially and at the end of the 
1994 bioassays; approximately 80% of the added 
hydrogen peroxide remained in the bioassays at the 
end of these experiments. A complete bioassay con- 
sisted of 6 seawater Cubitainer controls, and 3 Cubi- 
tainers each of seawater + FeC13, seawater + EDTA, 
seawater + Fe(III)EDTA, seawater + H202, seawater + 
FeC13 + H202,  seawater + EDTA + H 2 0 2 ,  and seawater 
+ Fe(II1)EDTA + H202, for a total of 27 Cubitainers per 
bioassay. 

Synthetic rain was prepared to provide a uniform 
and representative rainwater composition for certain 
bioassays. Synthetic rain (pH = 4.25) was prepared to 
contain 20 pM NO3- (prepared by diluting 0.01 N 
HN03), 10 yM NH,' (from 2.5 mM (NH4)2S04), 25 ~.IM 
S o d 2  (from 0.01 N H2S04 and 2.5 mM (NH4)2S04), and 
no added hydrogen peroxide. All chemicals used were 
Fisher, Mallinckrodt or Sigma Chemical Company 
reagent grade, unless otherwise described. Dilutions of 
stock synthetic rain solutions were made on shipboard 
using Millipore ultrapure deionized water. During the 
cruises, rain was collected on the flying bridge of the 
RV 'Cape Hatteras,' approxin~ately 10 m above the sea 
surface and ahead of the stacks. Rain was collected in 
3 separate precleaned (acid washed, deionized water 
rinsed) polyethylene bottles with funnels. 

Analytical. Rain collected at  sea was frozen, and 
later analyzed for chloride, nitrate, phosphate and sul- 
fate using suppressed ion chromatography (Fitchett 
1983). Synthetic rain stock solutions were also ana- 
lyzed by suppressed ion chromatography before and 
after cruises, and the solutions used in the bioassays 
were analyzed after cruises. Rainwater and seawater 
were analyzed on shipboard for hydrogen peroxide 
using the fluorescence decay method of Kieber & Heltz 
(1986). Salinity was measured at sea with a Guildline 
high precision salinometer. Nutrients were determined 
on previously frozen seawater samples using high-sen- 
sitivity colorimetric techniques described in Parsons et 
al. (1984). 

RESULTS 

The addition of dissolved FeCl, alone produced an 
increase in chl a in 1 out of the 5 bioassays (Figs. 1 & 2), 
which indicates that ferric iron is rarely a limiting 
nutrient in oligotrophic (Table 1) surface Gulf Stream 
water at this latitude. This lack of response to the addi- 
tion of inorganic ferric iron may reflect the proximity of 
the North American continent, a source of aerosol iron 
to surface Gulf Stream seawater in this region (Wallace 
et al. 1983). Martin et al. (1993) observed that iron 
(added as dissolved Fe(NO&) acted as a growth 

FeCI3 EDTA Fe(lll)EDTA 

Fig. 1. Percent of chl a response relative to control in spring- 
time bioassays conducted with surface Gulf Stream seawater 
in June 1993, May 1994 and May 1995 presented in chrono- 
logical order. Additions to the bioassays are stated below the 
data; FeCI3 and EDTA were not added in the first bioassay 
(June 1993). The first bar in each pair (gray) gives response to 
the addition stated below; the second bar (white) inbcates 
results obtained with the same addition plus hydrogen perox- 
ide. A vertical arrow indicates a significant difference be- 
tween adjacent bars (t-test, p ( 0.05). Error bars indicate the 
magnitude of 1 standard deviation. The control was unaltered 

seawater (100 * 26%) 
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Flg. 2.  Percent of chl a response relative to control in autumn 
bioassays conducted w ~ t h  surface Gulf Stream seawater in 
November 1993, November 1994 and September 1995 pre- 
sented in chronological order. Additions to the bioassays are 
stated below the data; EDTA was not added in the first bioas- 
say (November 1993). The first bar in each pair (gray) gives 
response to the addition stated below; the second bar (white) 
indicates results obtained with the same addition plus hydro- 
gen peroxide. A vertical arrow indicates a significant differ- 
ence between adjacent bars (t-test, p < 0.05). Error bars indi- 
cate the magnitude of 1 standard deviation. The control was 

unaltered seawater (100 * 12 %) 



148 Mar Ecol Prog Ser 178: 145-150. 1999 

enhancer although it was not growth limiting in their 
studies in the northeast Atlantic south of Iceland. Tim- 
mermans et al. (1998) observed no direct response to 
iron addition (added as dissolved FeC13) in the eastern 
Atlantic at 3 study sites all withln 800 km of land; they 
did observe an increased rate of nitrate uptake after 
addition of FeC13 at 1 of their sites. These Atlantic stud- 
ies, with subtle phytoplankton growth responses at 
most, contrast with the high nutrient, low chlorophyll 
Equatorial Pacific surface seawater which responded 
dramatically to additions of dissolved inorganic ferrous 
or ferric iron, organically complexed ferric iron, or iron 
leached from aerosols (Martin et al. 1991, 1994, John- 
son et al. 1994). An increase in chl a production after 
addition of EDTA, or iron (111) EDTA (0.20 PM) was ob- 
served in all 5 Gulf Stream surface seawater bioassays 
(ANOVA, p < 0.01, Figs. 1 & 2), which also indicates 
that the chl a response is not specifically related to iron 
enrichment in these experiments. Stimulation by 
EDTA alone has been reported for seawater in this 
region previously (Paerl et al. 1994). EDTA may react 
with particulate trace-metal-limiting nutrients to make 
them more available biologically (Lewin & Chen 1971, 
Anderson & More1 1982). EDTA may also complex 
toxic trace metals and hence decrease their toxicity 
(Sunda et  al. 1981, Sunda 1988-89, Bruland et al. 1991). 
These bioassays do not distinguish between these pos- 
sible mechanisms. 

The absolute value of the chl a increase was approx- 
imately 0.1 pg 1-' in each bioassay except May of 1994, 
which had a very low initial concentration (Table 1). 
The increases were greater in the spring bioassays 
compared with the autumn when expressed as per- 
centage change (Figs. 1 & 2). In bioassays conducted 
September 20 to 23 of 1995, a chl a increase (1.5 X) was 
observed in response to iron (111) EDTA additions as 
low as 0.020 pM, which is comparable to surface sea- 
water iron concentrations reported for Boston Harbor 
and Massachusetts Bay (Zhuang et al. 1995) and in the 
southeast Atlantic (Powell et al. 1995). 

When l % of a dilute solution (30 or 40 pM) of hydro- 
gen peroxide was added to the experimental seawater, 
the chl a increase was often not observed (in over half 
of the bioassays), causing the chl a concentrations to 
remain the same as the controls for the duration of 
these experiments (Figs. 1 & 2). This hydrogen perox- 
ide effect occurred whether the chl a response was to 
FeC13 alone, EDTA alone, or Fe(1II)EDTA. This lack of 
response was not due to salinity dilution because chl a 
increases have been observed following addition of 
synthetic rainwater without hydrogen peroxide in 
similar bioassay experiments (Paerl 1985, Willey & 
Cahoon 1991, Willey & Paerl 1993, Paerl et aI. 1994, 
and F1.g. 3).  The h.ydrogen peroxide inhibition of chl a 
production was not observed in bioassays that re- 

sponded to the addition of nitrate plus ammonium in 
synthetic rain (Fig. 3), which suggests that the inhibi- 
tion involves the iron or EDTA addition. One of the 
bioassays in which the hydrogen peroxide effect was 
not observed was the May 1994 experiment, which had 
the highest initial hydrogen peroxide concentration in 
the surface seawater. In that experiment, the addition 
of hydrogen peroxide increased the ambient concen- 
tration by a factor of 1.8; in all the other bioassays, this 
factor was more than 2.2. These experiments were 
conducted in the Gulf Stream over a 3 yr time period. 
The same exact results were not observed during each 
experiment, however the same water was not sampled 
each time. This temporal variability is inherent in 
oceanographic studies. 

The concentration of hydrogen peroxide used in the 
experiments, 30 or 40 pM, is within the range of rain- 
water concentrations (0.13 to 48.4 pM, 61 events, Wil- 
ley et al. 1996) received in nearby Wilrnington, North 
Carolina. The Wilmington rain is similar in concentra- 
tion to rain collected and analyzed at sea on these 6 
cruises (5.1 to 30.5 pM, 9 events). Concentrations as 
high as 82 pM have been reported in marine rain (Zika 
et al. 1982, Cooper et al. 1987). Rain can alter seawater 
hydrogen peroxide concentrations because rainwater 
concentrations are normally more than lOOx those in 
surface seawater. For example, 1 cm of rain with 50 pM 
hydrogen peroxide could double the hydrogen perox- 
ide concentration of 5 m of seawater with 100 nM 
hydrogen peroxide. 

Gulf Stream 1 Continental Shelf l 

V - 
15-17 Jun 93 -11-12 Nov 93 7-9 May 94 -15-17 Jun 93 11-42 Nov 93 7-9 May94 

Fig. 3. Percent of chl a response relative to controls in 6 bio- 
assays conducted w ~ t h  surface Gulf Stream seawater, or 
continental shelf water (salinities 35.2, 35.9 and 35.6% in 
sequence) approximately 100 km northwest of the Gulf 
Stream station, on the dates indicated. Controls (black bars) 
were unaltered seawater; gray bars indicate addition of syn- 
thetic rain (5% dilut~on in June 1993; 3% dilution in Novem- 
ber 1993, and May 1994); the third bars in each group (white) 
indicate addition of both synthetic rain (same dilutions as pre- 
ceding bars) and dilute hydrogen peroxide (1 % dilution). The 
chl a response to the addition of synthetic rain alone was not 
different in any bloassay than the response to the addition of 
synthetic rain plus hydrogen peroxide (t-test). Error bars indi- 

cate the magnitude of 1 standard deviation 
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DISCUSSION 

The rainwater hydrogen peroxide enrichment of sea- 
water in these experiments should alter the oxidation 
state of nutrient or toxic trace metals, thereby chang- 
ing the activity of free metal ions, and hence changing 
biological availability. Hydrogen peroxide can act as a 
reductant for certain metals. For example, cupric ion is 
reduced by hydrogen peroxide in seawater; thermody- 
namic calculations indicate that Cu(1) varies from 10 to 
25% of the total dissolved inorganic copper over the 
hydrogen peroxide concentration increase in these 
experiments (Moffett & Zika 1983). Because Cu(1) 
forms a stable complex with chloride, it can persist for 
many hours before oxidation by O2 (Moffett & Zika 
1983). Reduction and subsequent dissolution of partic- 
ulate MnOP by concentrations of hydrogen peroxide in 
the lO-? M range has been proposed by Sunda et al. 
(1983). Hydrogen peroxide also acts as an oxidant for 
certain metals. Hydrogen peroxide in seawater rapidly 
oxidizes ferrous iron, forming the much less soluble 
ferric iron, with the rate of reaction proportional to the 
concentration of hydrogen peroxide (Moffett & Zika 
1983, Millero & Sotolongo 1989). These metals do not 
occur independently in seawater or rainwater; compet- 
ing or antagonistic reactions between toxic and biolim- 
iting trace metals may affect seawater primary produc- 
tivity differently than individual trace metals acting 
independently of each other (Sunda et al. 1981, Bru- 
land et al. 1991). Trace metal reactions, mediated by 
hydrogen peroxide, may affect the bioavailability of 
certain trace metals regardless of source, whether 
added to surface seawater with rain or aerosol, or from 
upwelling or recycling. 

Rainwater may therefore play a complex role in 
affecting primary productivity in surface seawater, 
with the ratio of trace metals to hydrogen peroxide in 
rainwater determining whether rain from a specific 
storm event is a source or removal mechanism for trace 
metals. The composition of the surface seawater 
receiving the rain must also be a relevant factor in bio- 
mass response to rain, especially with respect to nitro- 
gen linlitation and whether seawater is enriched or 
depleted with ammoniunl and/or nitrate (Donaghay et 
al. 1991, Duce et al. 1991). 
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