1,878 research outputs found

    The phase diagram of NiSi under the conditions of small planetary interiors

    Get PDF
    The phase diagram of NiSi has been determined using in situ synchrotron X-ray powder diffraction multi-anvil experiments to 19 GPa, with further preliminary results in the laser-heated diamond cell reported to 60 GPa. The low-pressure MnP-structured phase transforms to two different high-pressure phases depending on the temperature: the ε-FeSi structure is stable at temperatures above ∼1100 K and a previously reported distorted-CuTi structure (with Pmmn symmetry) is stable at lower temperature. The invariant point is located at 12.8 ± 0.2 GPa and 1100 ± 20 K. At higher pressures, ε -FeSi-structured NiSi transforms to the CsCl structure with CsCl-NiSi as the liquidus phase above 30 GPa. The Clapeyron slope of this transition is -67 MPa/K. The phase boundary between the ε -FeSi and Pmmn structured phases is nearly pressure independent implying there will be a second sub-solidus invariant point between CsCl, ε -FeSi and Pmmn structures at higher pressure than attained in this study. In addition to these stable phases, the MnP structure was observed to spontaneously transform at room temperature to a new orthorhombic structure (also with Pnma symmetry) which had been detailed in previous ab initio simulations. This new phase of NiSi is shown here to be metastable

    Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    Full text link
    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238^{238}Ue_{e}~<<1.6~mBq/kg, 238^{238}Ul_{l}~<<0.09~mBq/kg, 232^{232}The_{e}~=0.28±0.03=0.28\pm 0.03~mBq/kg, 232^{232}Thl_{l}~=0.25±0.02=0.25\pm 0.02~mBq/kg, 40^{40}K~<<0.54~mBq/kg, and 60^{60}Co~<<0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160±0.0010.160\pm0.001(stat)±0.030\pm0.030(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle Physic

    Personality styles in patients with fibromyalgia, major depression and healthy controls

    Get PDF
    BACKGROUND: The fibromyalgia syndrome (FMS) is suggested to be a manifestation of depression or affective spectrum disorder. We measured the cognitive style of patients with FMS to assess personality styles in 44 patients with fibromyalgia syndrome (FMS) by comparing them with 43 patients with major depressive disorder (MDD) and 41 healthy controls (HC). METHODS: Personality styles were measured by the Sociotropy and Autonomy Scale (SAS) and the Dysfunctional Attitude Scale (DAS). The Structured Clinical interview for DSM Axis I was applied to Axis I disorders, while the Beck Depression Inventory was used to measure depression severity. RESULTS: Patients with FMS in general have a sociotropic personality style similar to patients with MDD, and different from HC, but FMS patients without a lifetime history of MDD had a cognitive personality style different from patients with MDD and similar to HC. CONCLUSION: These findings suggest that a depressotypic personality style is related to depressive disorder, but not to FMS

    Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): implications for vector control as a complementary strategy for onchocerciasis elimination in Africa

    Get PDF
    Background: In 2012, the World Health Organization set goals for the elimination of onchocerciasis transmission by 2020 in selected African countries. Epidemiological data and mathematical modelling have indicated that elimination may not be achieved with annual ivermectin distribution in all endemic foci. Complementary and alternative treatment strategies (ATS), including vector control, will be necessary. Implementation of vector control will require that the ecology and population dynamics of Simulium damnosum sensu lato be carefully considered. Methods: We adapted our previous SIMuliid POPulation dynamics (SIMPOP) model to explore the impact of larvicidal insecticides on S. damnosum (s.l.) biting rates in different ecological contexts and to identify how frequently and for how long vector control should be continued to sustain substantive reductions in vector biting. SIMPOP was fitted to data from large-scale aerial larviciding trials in savannah sites (Ghana) and small-scale ground larviciding trials in forest areas (Cameroon). The model was validated against independent data from Burkina Faso/Côte d’Ivoire (savannah) and Bioko (forest). Scenario analysis explored the effects of ecological and programmatic factors such as pre-control daily biting rate (DBR) and larviciding scheme design on reductions and resurgences in biting rates. Results: The estimated efficacy of large-scale aerial larviciding in the savannah was greater than that of ground-based larviciding in the forest. Small changes in larvicidal efficacy can have large impacts on intervention success. At 93% larvicidal efficacy (a realistic value based on field trials), 10 consecutive weekly larvicidal treatments would reduce DBRs by 96% (e.g. from 400 to 16 bites/person/day). At 70% efficacy, and for 10 weekly applications, the DBR would decrease by 67% (e.g. from 400 to 132 bites/person/day). Larviciding is more likely to succeed in areas with lower water temperatures and where blackfly species have longer gonotrophic cycles. Conclusions: Focal vector control can reduce vector biting rates in settings where a high larvicidal efficacy can be achieved and an appropriate duration and frequency of larviciding can be ensured. Future work linking SIMPOP with onchocerciasis transmission models will permit evaluation of the impact of combined anti-vectorial and anti-parasitic interventions on accelerating elimination of the disease

    Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility

    Get PDF
    Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0–3300 keV) varied from 596 Hz to 1355 Hz for unshielded measurements, corresponding to a total flux from the cavern walls of 1.9 ± 0.4 γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220 ± 60 Bq/kg of 40K, 29 ± 15 Bq/kg of 238U, and 13 ± 3 Bq/kg of 232Th

    What are the Effects of Contamination Risks on Commercial and Industrial Properties? Evidence from Baltimore, Maryland

    Full text link

    Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

    Get PDF
    LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
    corecore