166 research outputs found

    Preventing the spread of coenurosis – a disease of sheep and goats

    Get PDF

    Whole-genome sequencing of Theileria parva strains provides insight into parasite migration and diversification in the african continent

    Get PDF
    The disease caused by the apicomplexan protozoan parasite Theileria parva, known as East Coast fever or Corridor disease, is one of the most serious cattle diseases in Eastern, Central, and Southern Africa. We performed whole-genome sequencing of nine T. parva strains, including one of the vaccine strains (Kiambu 5), field isolates from Zambia, Uganda, Tanzania, or Rwanda, and two buffalo-derived strains. Comparison with the reference Muguga genome sequence revealed 34 814–121 545 single nucleotide polymorphisms (SNPs) that were more abundant in buffalo-derived strains. High-resolution phylogenetic trees were constructed with selected informative SNPs that allowed the investigation of possible complex recombination events among ancestors of the extant strains. We further analysed the dN/dS ratio (non-synonymous substitutions per non-synonymous site divided by synonymous substitutions per synonymous site) for 4011 coding genes to estimate potential selective pressure. Genes under possible positive selection were identified that may, in turn, assist in the identification of immunogenic proteins or vaccine candidates. This study elucidated the phylogeny of T. parva strains based on genome-wide SNPs analysis with prediction of possible past recombination events, providing insight into the migration, diversification, and evolution of this parasite species in the African continent

    DNA species surveillance: Monitoring bushmeat poaching and trading in Kenya using partial cytochrome b gene

    Get PDF
    DNA species identification has applications in such areas as forensic science, systematics, conservation genetics and agriculture. One key anthropogenic activity threatening large wildlife fauna is illegal exploitation. In Kenya, species identification of raw and processed meat products remains a constraint to effective enforcement of illegal trade in game meat (bushmeat) and products. We tested the reliability of a 321 bp mitochondrial cytochrome b (cyt b) region as a species identification tool for application in wildlife forensics. Query sequences were generated from known specimens of 14 Eastern African wildlife species, 13 representing commonly poached ungulates, and three domesticated species. These were compared, using Basic Local Alignment Search Tool (BLAST) algorithm, with NCBI GenBank reference sequences for species identity. These query sequences were subsequently deposited on Genbank. They represent a contribution to a diagnostic internal East African Wildlife reference cyt b database. The test species comprised: Cape buffalo, bushbuck, Guenther’s dik-dik, common duiker, common eland, Grant’s gazelle, hartebeest, impala, lesser kudu, plains zebra, Thomson’s gazelle, common warthog, wildebeest, Maasai ostrich, cattle, goat and sheep. Additionally, cooked beef and pork samples were analyzed. The results show that, when conspecific sequences were available in the database, species discrimination was 100%. Phylogeny clustering of the species by maximum likelihood supported the species determination by BLAST. The second part of the study carried out a preliminary survey of the prevalence of illegal game meat sold in the dispersal area of Tsavo National Park, Kenya. Sixty two raw meat samples were randomly collected from small roadside retail outlets along the Nairobi-Mombasa highway (A109), a major transnational highway that transverses Tsavo National Park. The results indicate a 9.7% (n = 6) illegal game meat sale, comprising five Guenther’s dik-diks and a Beisa oryx. A 2 km radius hotspot, with 83% (n = 5) of the bushmeat sales was identified just south of Tsavo East National Park.Key words: East Africa, Kenya, bushmeat, poaching, wildlife conservation, species identification, mitochondrial cytochrome b gene

    Patterns in Age-Seroprevalence Consistent with Acquired Immunity against Trypanosoma brucei in Serengeti Lions

    Get PDF
    Trypanosomes cause disease in humans and livestock throughout sub-Saharan Africa. Although various species show evidence of clinical tolerance to trypanosomes, until now there has been no evidence of acquired immunity to natural infections. We discovered a distinct peak and decrease in age prevalence of T. brucei s.l. infection in wild African lions that is consistent with being driven by an exposure-dependent increase in cross-immunity following infections with the more genetically diverse species, T. congolense sensu latu. The causative agent of human sleeping sickness, T. brucei rhodesiense, disappears by 6 years of age apparently in response to cross-immunity from other trypanosomes, including the non-pathogenic subspecies, T. brucei brucei. These findings may suggest novel pathways for vaccinations against trypanosomiasis despite the notoriously complex antigenic surface proteins in these parasites

    A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology

    Get PDF
    The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named &lt;i&gt;TbOrg1&lt;/i&gt;). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (&lt;i&gt;TbOrg2&lt;/i&gt;). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits

    Patterns in Age-Seroprevalence Consistent with Acquired Immunity against Trypanosoma brucei in Serengeti Lions

    Get PDF
    Trypanosomes cause disease in humans and livestock throughout sub-Saharan Africa. Although various species show evidence of clinical tolerance to trypanosomes, until now there has been no evidence of acquired immunity to natural infections. We discovered a distinct peak and decrease in age prevalence of T. brucei s.l. infection in wild African lions that is consistent with being driven by an exposure-dependent increase in cross-immunity following infections with the more genetically diverse species, T. congolense sensu latu. The causative agent of human sleeping sickness, T. brucei rhodesiense, disappears by 6 years of age apparently in response to cross-immunity from other trypanosomes, including the non-pathogenic subspecies, T. brucei brucei. These findings may suggest novel pathways for vaccinations against trypanosomiasis despite the notoriously complex antigenic surface proteins in these parasites
    • …
    corecore