24 research outputs found

    Codesigned Shared Decision-Making Diabetes Management Plan Tool for Adolescents With Type 1 Diabetes Mellitus and Their Parents: Prototype Development and Pilot Test

    Get PDF
    Background: Adolescents with type 1 diabetes mellitus have difficulty achieving optimal glycemic control, partly due to competing priorities that interfere with diabetes self-care. Often, significant diabetes-related family conflict occurs, and adolescents’ thoughts and feelings about diabetes management may be disregarded. Patient-centered diabetes outcomes may be better when adolescents feel engaged in the decision-making process. Objective: The objective of our study was to codesign a clinic intervention using shared decision making for addressing diabetes self-care with an adolescent patient and parent advisory board. Methods: The patient and parent advisory board consisted of 6 adolescents (teens) between the ages 12 and 18 years with type 1 diabetes mellitus and their parents recruited through our institution’s Pediatric Diabetes Program. Teens and parents provided informed consent and participated in 1 or both of 2 patient and parent advisory board sessions, lasting 3 to 4 hours each. Session 1 topics were (1) patient-centered outcomes related to quality of life, parent-teen shared diabetes management, and shared family experiences; and (2) implementation and acceptability of a patient-centered diabetes care plan intervention where shared decision making was used. We analyzed audio recordings, notes, and other materials to identify and extract ideas relevant to the development of a patient-centered diabetes management plan. These data were visually coded into similar themes. We used the information to develop a prototype for a diabetes management plan tool that we pilot tested during session 2. Results: Session 1 identified 6 principal patient-centered quality-of-life measurement domains: stress, fear and worry, mealtime struggles, assumptions and judgments, feeling abnormal, and conflict. We determined 2 objectives to be principally important for a diabetes management plan intervention: (1) focusing the intervention on diabetes distress and conflict resolution strategies, and (2) working toward a verbalized common goal. In session 2, we created the diabetes management plan tool according to these findings and will use it in a clinical trial with the aim of assisting with patient-centered goal setting. Conclusions: Patients with type 1 diabetes mellitus can be effectively engaged and involved in patient-centered research design. Teens with type 1 diabetes mellitus prioritize reducing family conflict and fitting into their social milieu over health outcomes at this time in their lives. It is important to acknowledge this when designing interventions to improve health outcomes in teens with type 1 diabetes mellitus

    Factors influencing late-Holocene vegetation dynamics and biodiversity on Hallands Väderö, SW Sweden: A statistical evaluation

    Get PDF
    Forest composition characteristic of the Mid-Holocene has survived on Hallands Väderö, an island nature reserve off the south west coast of Sweden. Current veteran Tilia and Quercus trees contribute to a remarkably rich biodiversity of fungi, bryophytes, lichens and insects. Understanding which potential factors influence Holocene vegetation dynamics can support efforts to protect biodiversity, but the role of grazing and browsing has previously been difficult to evaluate because of the lack of long-term datasets. Palaeoecological analyses over the last c. 3000 years from a pond on the island reveal sustained presence of Quercus, Alnus, Tilia, Corylus and Ulmus, alongside increasing Fagus in recent centuries. Changes in grazing pressure have been documented since AD 1665 and a statistical approach was used to calculate the relative importance of grazing pressure, climate variability, and fire activity on the dynamics of selected taxa. Grazing was the main factor reducing population size of Fagus, Alnus, Tilia and Corylus on the island over the period AD 1665–1858, with warm winter temperatures and summer humidity having significant positive influences in the last millennium for Quercus, Alnus, Tilia and Corylus. The survival of large numbers of red-listed species is likely to be due to the continuity of large old trees, ancient forest composition and a distinctive disturbance history in a favourable climate. </jats:p

    Fire-vegetation interactions during the last 11,000 years in boreal and cold temperate forests of Fennoscandia

    Get PDF
    The long-term ecological interactions between fire and the composition of dominant trees and shrubs in boreal and cold temperate Fennoscandian forests are still under discussion. We hypothesized that fire-prone taxa should abound during periods and regions characterized by higher fire disturbance, while fire-intolerant taxa should dominate when and where fire activity is low. Biomass burning (BB) is here investigated based on 69 sedimentary charcoal records. For the same sites, the relative contribution of pollen-based reconstructions of dominant vegetation cover divided into three different fire-sensitivity classes is explored by means of a statistical approach. The overall patterns found across Fennoscandia suggest that Ericaceae (mainly Calluna), Pinus, Betula and Populus are strongly positively correlated with multi-millennial variability of BB in both boreal and cold temperate forests, confirming their fire-prone character (taxa adapted/favoured by burning). Positive but much weaker (and not always significant) relationships also exist between long-term trends in BB and Fagus, Quercus, Corylus, Alnus, Juniperus, Carpinus and Salix, fire-tolerant taxa that survive low/moderate intense fires because of specific functional traits or their rapid, enhanced regeneration after fire. A strong negative significant correlation is instead detected between BB and Picea, Ulmus Tilia, Fraxinus, which are fire-intolerant taxa and can locally disappear for a short time after a fire. This large-scale analysis supports our initial hypothesis that tree and shrub dominance was closely linked to biomass burning since the onset of the Holocene in the study regions. Fire was an important ecosystem disturbance in Fennoscandia influencing long-term vegetation dynamics and composition over the last 11,000 years, although human activities probably altered the strength of fire-vegetation interactions during more recent millennia

    The history of <i>Fagus sylvatica</i> at its northern limit in Vendsyssel, Denmark

    Get PDF
    Pollen, plant macrofossils and charcoal analyses were used to study tree diversity, fire history and forest disturbance over the past c. 3500 years at three forest remnant sites in Vendsyssel, northern Denmark. All locations had a more diverse tree composition in the past including abundant Alnus, Betula, Corylus, Pinus, Quercus, Salix, Tilia and Ulmus. The changes in tree diversity through time can be attributed to a combination of factors including climate change, burning linked to shifting cultivation, grazing and felling. The balance between arboreal and non-arboreal pollen was already being influenced by human activities in the late Bronze Age c. 3000 years ago. The high pollen abundance values recorded for Tilia pre-2000 years ago are exceptional as compared to later periods at these sites. At one location, the transition from Tilia to Fagus indicated that Tilia prevailed until c. 1300 years ago. Subsequent periods of forest clearance, with charcoal and cereal cultivation, initially including Hordeum and subsequently also Secale, were recorded. There was pollen evidence for grazing followed by shrub regeneration including Calluna, Erica, Juniperus and herbaceous taxa, and following that, a forest recovery of mainly Fagus, Picea and Pinus. This recovery is also recorded in historical forest records from 1880 CE onwards, emphasising the dominant role of plantation schemes. Results are placed in a wider framework of other sites in Denmark and southern Scandinavia, which have also documented a reduction of tree diversity and forest cover over the same period. The evidence from the long-term record is used to draw conclusions to assist forest restoration programmes. </jats:p

    Creating research-ready partnerships: The initial development of seven implementation laboratories to advance cancer control

    Get PDF
    BACKGROUND: In 2019-2020, with National Cancer Institute funding, seven implementation laboratory (I-Lab) partnerships between scientists and stakeholders in \u27real-world\u27 settings working to implement evidence-based interventions were developed within the Implementation Science Centers in Cancer Control (ISC3) consortium. This paper describes and compares approaches to the initial development of seven I-Labs in order to gain an understanding of the development of research partnerships representing various implementation science designs. METHODS: In April-June 2021, members of the ISC3 Implementation Laboratories workgroup interviewed research teams involved in I-Lab development in each center. This cross-sectional study used semi-structured interviews and case-study-based methods to collect and analyze data about I-Lab designs and activities. Interview notes were analyzed to identify a set of comparable domains across sites. These domains served as the framework for seven case descriptions summarizing design decisions and partnership elements across sites. RESULTS: Domains identified from interviews as comparable across sites included engagement of community and clinical I-Lab members in research activities, data sources, engagement methods, dissemination strategies, and health equity. The I-Labs use a variety of research partnership designs to support engagement including participatory research, community-engaged research, and learning health systems of embedded research. Regarding data, I-Labs in which members use common electronic health records (EHRs) leverage these both as a data source and a digital implementation strategy. I-Labs without a shared EHR among partners also leverage other sources for research or surveillance, most commonly qualitative data, surveys, and public health data systems. All seven I-Labs use advisory boards or partnership meetings to engage with members; six use stakeholder interviews and regular communications. Most (70%) tools or methods used to engage I-Lab members such as advisory groups, coalitions, or regular communications, were pre-existing. Think tanks, which two I-Labs developed, represented novel engagement approaches. To disseminate research results, all centers developed web-based products, and most (n = 6) use publications, learning collaboratives, and community forums. Important variations emerged in approaches to health equity, ranging from partnering with members serving historically marginalized populations to the development of novel methods. CONCLUSIONS: The development of the ISC3 implementation laboratories, which represented a variety of research partnership designs, offers the opportunity to advance understanding of how researchers developed and built partnerships to effectively engage stakeholders throughout the cancer control research lifecycle. In future years, we will be able to share lessons learned for the development and sustainment of implementation laboratories

    Rhyolitic tephra horizons in northwestern Europe and Iceland from the AD 700s-800s: a potential alternative for dating first human impact

    Get PDF
    The distribution and geochemistry of four rhyolitic tephra horizons from Iceland dated to the ad 700s–800s is assessed. These include the rhyolitic phase of the Landnám tephra (ad 870s), the ad 860 layer, a previously unrecorded tephra called the GA4–85 layer (c. ad 700–800) and the Tjïrnuvík tephra (c. ad 800s). The ad 860 and GA4–85 layers were first found in peat bogs in north Ireland. They are here correlated with equivalent horizons on Iceland which were found below the Landnám tephra (c. ad 870s). This time period is considered important in the North Atlantic region, because it coincides with a phase of human settlement in Iceland and the Faroe Islands. The establishment of a detailed tephrochronology may provide a tool for exact dating of sediment successions and sediments associated with archaeological excavations. Caution must be taken especially on Iceland where the Landnám tephra is often used for dating archaeological sites. This investigation show that several rhyolitic tephra horizons occur close in time to the Landnám tephra, and that mistakes can be made if detailed geochemical analyses are not carried out, especially in areas which are distal to the source of the Landnám tephra (the Veidivötn and Torfajökull volcanic systems, southern Iceland)

    Bokskogens historia och dynamik i Biskopstorp och Dömestorp: resultat från makrofossilstudier

    No full text
    Paleoekologiska analyser har dokumenterat skogshistorien från två områden med gammal bokskog och höga nutida biologiska värden. I Biskopstorp, Halmstads kommun, sträcker sig fynden av växtmakrofossil tillbaka tills 1010 f.Kr. Skogen var då en blandad skog dominerad av lind, ek, hassel och tall. Fynd av kolpartiklar visar att brand var en del av störningsregimen och funna växtmakrofossil av markfloran pekar på att skogen var delvis öppen i struktur. Tall och ek tolererar brand bättre än många andra trädarter och hassel skjuter stubbskott efter brand. Bokpollen noterades först vid 300 e.Kr. men förekom med högre frekvens vid 1150 e.Kr. (Björkman, 2000). Fynden av makrofossil visar att när brandregimen upphörde, expanderade bok. Detta visar på en tydlig koppling mellan störning i landskap och denna trädtyp. Det visar också bokens känslighet för brand. Bok var det dominerade trädslaget över flera sekler och ersatte slutligen lind och ek. Det sista fyndet av tall förekommer ca 1375 e.Kr. Liknande fynd har gjorts på Killeröd löväng, (1150 e.Kr.) Bjärehalvön (Hannon och Hernborg, opublicerat) och Suserup Skov i Danmark (900 e.Kr.) (Hannon et al, 2000).I Dömestorp, Laholms kommun, sträcker sig de paleoekologiska fynden tillbaka till 500 f.Kr. Störningar i landskapet i form av brand påverkade skogen så att den blev delvis öppen med en rik markflora. Bok etablerade sig på undersökningslokalen ca 300 e.Kr., efter ett lager som innehåller många stora trädgrenar och kvistar som identiferas bl.a. som ask, ek och lind. Detta visar än en gång på lokal etablering av bok efter störningar.I såväl Biskopstorp som i Dömestorp minskade boken drastiskt under 1700- och 1800- talet när det var störst press på skogen delvis p.g.a. den kalla period som kallades Lilla Istiden. På undersökningslokalen i Biskopstorp hittar man då fortfarande makrorester av bok, men på de undersökta lokalerna i Dömestorp försvann bok under denna tid. Även om bok minskade eller försvann tillfälligt, fanns trädkontinuiteten kvar, fast med andra trädslag som al och björk. Denna skogliga kontinuitet över flera tusen år, fast med olika trädslagskomposition, kan vara en orsak till att de två områdena har så höga naturvården idag.Regionala inventeringsrapporter import från MDP 2015-05</p

    Dynamic early Holocene vegetation development on the Faroe Islands inferred from high-resolution plant macrofossil and pollen data

    No full text
    Vegetation dynamics during the earliest part of the Holocene (11,250-10,250 cal yr BP) have been reconstructed from a lacustrine sequence on Sandoy, the Faroe Islands, using detailed plant macrofossil and pollen evidence. The plant macrofossils suggest the initial vegetation was sparse herb and shrub tundra, with Salix herbacea and open-ground species, followed by the development of a denser and more species-rich arctic heathland after 11,150 cal yr BP. Despite high pollen values for Betula nana, macrofossils are rare. The bulk of the macrofossils recorded are S. herbacea and Empetrum leaves with numerous herb taxa and an abundance of Racomitrium moss. Conditions start to change around 10,800 cal yr BP, with increased catchment erosion and sediment delivery to the lake from ca. 10,600 cal yr BP, and a transition to alternating Cyperaceae and Poaceae communities between ca. 10,450 and 10,250 cal yr BP. This vegetation change, which has been recorded throughout the Faroes, has previously been interpreted as a retrogressive shift from woody shrubs to a herbaceous community. The detailed plant macrofossil data show the shift is the replacement of an Empetrum arctic heathland by grassland and moist sedge communities. These taxa dominate the modern landscape. (C) 2009 University of Washington. Published by Elsevier Inc. All rights reserved

    Holocene History of Alpine Vegetation and Forestline on Pyhäkero Mountain, Northern Finland

    Full text link
    corecore