80 research outputs found

    The child's right to protection against economic exploitation in the digital world

    Get PDF
    Abstract Children face significant consumer risks when surfing online, related to, inter alia, embedded advertisements and privacy-invasive practices, as well as the exploitation of their incredulity and inexperience resulting in overspending or online fraudulent transactions. Behind the fun and playful activities available for children online lie complex revenue models, creating value for companies by feeding children's data into algorithms and self-learning models to profile them and offer personalised advertising or by nudging children to buy or try to win in-app items to advance in the games they play. In this article we argue that specific measures against these forms of economic exploitation of children in the digital world are urgently needed. We focus on three types of exploitative practices that may have a significant impact on the well-being and rights of children - profiling and automated decision-making, commercialisation of play, and digital child labour. For each type, we explain what the practice entails, situate the practice within the existing legislative and children's rights framework and identify concerns in relation to those rights. Keyword

    Trajectories of Adolescents Treated with Gonadotropin-Releasing Hormone Analogues for Gender Dysphoria

    Get PDF
    Gonadotropin-releasing hormone analogues (GnRHa) are recommended as initial treatment for adolescents diagnosed with gender dysphoria, providing time to follow gender identity development and consider further treatment wishes without distress caused by unwant

    Endocrine treatment of gender-dysphoric/gender-incongruent persons : an Endocrine Society clinical practice guideline

    Get PDF
    Objective: To update the "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline," published by the Endocrine Society in 2009. Participants: The participants include an Endocrine Societyappointed task force of nine experts, a methodologist, and a medical writer. Evidence: This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. Consensus Process: Group meetings, conference calls, and e-mail communications enabled consensus. Endocrine Society committees, members and cosponsoring organizations reviewed and commented on preliminary drafts of the guidelines. Conclusion: Gender affirmation is multidisciplinary treatment in which endocrinologists play an important role. Gender-dysphoric/gender-incongruent persons seek and/or are referred to endocrinologists to develop the physical characteristics of the affirmed gender. They require a safe and effective hormone regimen that will (1) suppress endogenous sex hormone secretion determined by the persons genetic/gonadal sex and (2) maintain sex hormone levels within the normal range for the persons affirmed gender. Hormone treatment is not recommended for prepubertal gender-dysphoric/gender-incongruent persons. Those clinicians who recommend gender-affirming endocrine treatments-appropriately trained diagnosing clinicians (required), a mental health provider for adolescents (required) and mental health professional for adults (recommended)-should be knowledgeable about the diagnostic criteria and criteria for gender-affirming treatment, have sufficient training and experience in assessing psychopathology, and be willing to participate in the ongoing care throughout the endocrine transition. We recommend treating gender-dysphoric/gender-incongruent adolescents who have entered puberty at Tanner Stage G2/B2 by suppression with gonadotropin-releasing hormone agonists. Clinicians may add gender-affirming hormones after a multidisciplinary team has confirmed the persistence of gender dysphoria/gender incongruence and sufficient mental capacity to give informed consent to this partially irreversible treatment. Most adolescents have this capacity by age 16 years old. We recognize that there may be compelling reasons to initiate sex hormone treatment prior to age 16 years, although there is minimal published experience treating prior to 13.5 to 14 years of age. For the care of peripubertal youths and older adolescents, we recommend that an expert multidisciplinary team comprised of medical professionals and mental health professionals manage this treatment. The treating physician must confirm the criteria for treatment used by the referring mental health practitioner and collaborate with them in decisions about gender-affirming surgery in older adolescents. For adult gender-dysphoric/gender-incongruent persons, the treating clinicians (collectively) should have expertise in transgender-specific diagnostic criteria, mental health, primary care, hormone treatment, and surgery, as needed by the patient. We suggest maintaining physiologic levels of gender-appropriate hormones and monitoring for known risks and complications. When high doses of sex steroids are required to suppress endogenous sex steroids and/or in advanced age, clinicians may consider surgically removing natal gonads along with reducing sex steroid treatment. Clinicians should monitor both transgender males (female to male) and transgender females (male to female) for reproductive organ cancer risk when surgical removal is incomplete. Additionally, clinicians should persistently monitor adverse effects of sex steroids. For gender-affirming surgeries in adults, the treating physician must collaborate with and confirm the criteria for treatment used by the referring physician. Clinicians should avoid harming individuals (via hormone treatment) who have conditions other than gender dysphoria/gender incongruence and who may not benefit from the physical changes associated with this treatment

    Birth weight in different etiologies of disorders of sex development

    Get PDF
    Context: It is well established that boys are heavier than girls at birth. Although the cause of birth weight (BW) difference is unknown, it has been proposed that it could be generated from prenatal androgen action. Objective: The aim of the current study was to determine the BW of children with disorders of sex development (DSD) of different etiologies and to evaluate the effects of androgen action on BW. Methods: Data regarding diagnosis, BW, gestational age, karyotype, and concomitant conditions were collected from the InternationalDisorders of SexDevelopment (I-DSD) Registry (www.i-dsd).BWstandard deviation score was calculated according to gestational age. Cases were evaluated according to disorder classification in I-DSD (i.e., disorders of gonadal development, androgen excess, androgen synthesis, androgen action, nonspecific disorder of undermasculinization groups, and Leydig cell defect). Results: A total of 533 cases were available; 400 (75%) cases were 46,XY, and 133 (25%) cases were 46,XX. Eighty cases (15%) were born small for gestational age (SGA). Frequency of SGA was higher in the 46,XY group (17.8%) than in the 46,XX (6.7%) group (P = 0.001). Mean BW standard deviation scores of cases with androgen excess and androgen deficiency [in disorders of gonadal development, androgen synthesis, and Leydig cell defect groups and androgen receptor gene (AR)mutation-positive cases in disorders of androgen action groups]were similar to normal childrenwith the same karyotype. SGA birth frequency was higher in the AR mutation-negative cases in disorders of androgen action group and in the nonspecific disorders of the undermasculinization group. Conclusions: BWdimorphism is unlikely to be explained by fetal androgen action per se. 46,XY DSDs due to nonspecific disorders of undermasculinizationare more frequently associatedwithfetal growth restriction, SGA, and concomitant conditions

    Under-reported aspects of diagnosis and treatment addressed in the Dutch-Flemish guideline for comprehensive diagnostics in disorders/differences of sex development

    Get PDF
    We present key points from the updated Dutch-Flemish guideline on comprehensive diagnostics in disorders/differences of sex development (DSD) that have not been widely addressed in the current (inter)national literature. These points are of interest to physicians working in DSD (expert) centres and to professionals who come across persons with a DSD but have no (or limited) experience in this area. The Dutch-Flemish guideline is based on internationally accepted principles. Recent initiatives striving for uniform high-quality care across Europe, and beyond, such as the completed COST action 1303 and the European Reference Network for rare endocrine conditions (EndoERN), have generated several excellent papers covering nearly all aspects of DSD. The Dutch-Flemish guideline follows these international consensus papers and covers a number of other topics relevant to daily practice. For instance, although next-generation sequencing (NGS)-based molecular diagnostics are becoming the gold standard for genetic evaluation, it can be difficult to prove variant causality or relate the genotype to the clinical presentation. Network formation and centralisation are essential to promote functional studies that assess the effects of genetic variants and to the correct histological assessment of gonadal material from DSD patients, as well as allowing for maximisation of expertise and possible cost reductions. The Dutch-Flemish guidelines uniquely address three aspects of DSD. First, we propose an algorithm for counselling and diagnostic evaluation when a DSD is suspected prenatally, a clinical situation that is becoming more common. Referral to ultrasound sonographers and obstetricians who are part of a DSD team is increasingly important here. Second, we pay special attention to healthcare professionals not working within a DSD centre as they are often the first to diagnose or suspect a DSD, but are not regularly exposed to DSDs and may have limited experience. Their thoughtful communication to patients, carers and colleagues, and the accessibility of protocols for first-line management and efficient referral are essential. Careful communication in the prenatal to neonatal period and the adolescent to adult transition are equally important and relatively under-reported in the literature. Third, we discuss the timing of (NGS-based) molecular diagnostics in the initial workup of new patients and in people with a diagnosis made solely on clinical grounds or those who had earlier genetic testing that is not compatible with current state-of-the-art diagnostics

    Optimizing the Timing of Highest Hydrocortisone Dose in Children and Adolescents With 21-Hydroxylase Deficiency

    Get PDF
    CONTEXT: Hydrocortisone treatment of young patients with 21-hydroxylase deficiency (21OHD) is given thrice daily, but there is debate about the optimal timing of the highest hydrocortisone dose, either mimicking the physiological diurnal rhythm (morning), or optimally suppressing androgen activity (evening). OBJECTIVE: We aimed to compare 2 standard hydrocortisone timing strategies, either highest dosage in the morning or evening, with respect to hormonal status throughout the day, nocturnal blood pressure (BP), and sleep and activity scores. METHODS: This 6-week crossover study included 39 patients (aged 4-19 years) with 21OHD. Patients were treated for 3 weeks with the highest hydrocortisone dose in the morning, followed by 3 weeks with the highest dose in the evening (n = 21), or vice versa (n = 18). Androstenedione (A4) and 17-hydroxyprogesterone (17OHP) levels were quantified in saliva collected at 5 am; 7 am; 3 pm; and 11 pm during the last 2 days of each treatment period. The main outcome measure was comparison of saliva 17OHP and A4 levels between the 2 treatment strategies. RESULTS: Administration of the highest dose in the evening resulted in significantly lower 17OHP levels at 5 am, whereas the highest dose in the morning resulted in significantly lower 17OHP and A4 levels in the afternoon. The 2 treatment dose regimens were comparable with respect to averaged daily hormone levels, nocturnal BP, and activity and sleep scores. CONCLUSION: No clear benefit for either treatment schedule was established. Given the variation in individual responses, we recommend individually optimizing dose distribution and monitoring disease control at multiple time points

    International practice of corticosteroid replacement therapy in congenital adrenal hyperplasia - data from the I-CAH registry.

    Get PDF
    OBJECTIVE: Despite published guidelines no unified approach to hormone replacement in congenital adrenal hyperplasia (CAH) exists. We aimed to explore geographical and temporal variations in the treatment with glucocorticoids and mineralocorticoids in CAH. DESIGN: This retrospective multi-center study, including 31 centers (16 countries), analyzed data from the International-CAH Registry. METHODS: Data was collected from 461 patients aged 0-18 years with classic 21-hydroxylase deficiency (54.9% females) under follow-up between 1982 - 2018. Type, dose and timing of glucocorticoid and mineralocorticoid replacement was analyzed from 4174 patient visits. RESULTS: The most frequently used glucocorticoid was hydrocortisone (87.6%). Overall, there were significant differences between age groups with regards to daily hydrocortisone-equivalent dose for body surface, with the lowest dose (median with interquartile range) of 12.0 (10.0 - 14.5) mg/ m2/ day at age 1 - 8 years and the highest dose of 14.0 (11.6 - 17.4) mg/ m2/ day at age 12-18 years. Glucocorticoid doses decreased after 2010 in patients 0-8 years (p<0.001) and remained unchanged in patients aged 8-18 years. Fludrocortisone was used in 92% of patients, with relative doses decreasing with age. A wide variation was observed among countries with regards to all aspects of steroid hormone replacement. CONCLUSIONS: Data from the I-CAH Registry suggests international variations in hormone replacement therapy, with a tendency to treatment with high doses in children

    The External Genitalia Score (EGS): A European Multicenter Validation Study

    Get PDF
    CONTEXT: Standardized description of external genitalia is needed in the assessment of children with atypical genitalia. OBJECTIVES: To validate the External Genitalia Score (EGS), to present reference values for preterm and term babies up to 24 months and correlate obtained scores with anogenital distances (AGDs). DESIGN, SETTING: A European multicenter (n = 8) validation study was conducted from July 2016 to July 2018. PATIENTS AND METHODS: EGS is based on the external masculinization score but uses a gradual scale from female to male (range, 0-12) and terminology appropriate for both sexes. The reliability of EGS and AGDs was determined by the interclass correlation coefficient (ICC). Cross-sectional data were obtained in 686 term babies (0-24 months) and 181 preterm babies, and 111 babies with atypical genitalia. RESULTS: The ICC of EGS in typical and atypical genitalia is excellent and good, respectively. Median EGS (10th to 90th centile) in males < 28 weeks gestation is 10 (8.6-11.5); in males 28-32 weeks 11.5 (9.2-12); in males 33-36 weeks 11.5 (10.5-12) and in full-term males 12 (10.5-12). In all female babies, EGS is 0 (0-0). The mean (SD) lower/upper AGD ratio (AGDl/u) is 0.45 (0.1), with significant difference between AGDl/u in males 0.49 (0.1) and females 0.39 (0.1) and intermediate values in differences of sex development (DSDs) 0.43 (0.1). The AGDl/u correlates with EGS in males with typical genitalia and in atypical genitalia. CONCLUSIONS: EGS is a reliable and valid tool to describe external genitalia in premature and term babies up to 24 months. EGS correlates with AGDl/u in males. It facilitates standardized assessment, clinical decision-making and multicenter research
    • …
    corecore