11 research outputs found
In vitro and in vivo evaluation of periosteum-derived cells and iPSC-derived chondrocytes encapsulated in GelMA for osteochondral tissue engineering
Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant
Evaluation of quality of clinical management of neuroendocrine tumors
Abstract Background Neuroendocrine tumors (NETs) are a group of biologically and clinically heterogeneous neoplasms predominantly found in the gastrointestinal and bronchopulmonary tractus. Despite a rising incidence, implementation of evidenceâbased standardized care for this heterogenous group remains challenging. The European Neuroendocrine Tumor Society regularly reviews guidelines regarding diagnostic and treatment strategies for NETs. The aim of this study is to shed light on the care of patients with a NET in Belgian Limburg, to provide data as a basis for future studies and to check whether data and results are according to consensus guidelines and outcomes described in literature. Methods Our study concerned a detailed observational data collection of two large Belgian hospitals (Jessa Hospital Hasselt and Hospital OostâLimburg Genk) with special interest in patient profile, quality of pathology reports, use of diagnostic imaging, and overall survival. Data on 188 patients were assembled between January 2010 and December 2014 with followâup until June 2016 (median followâup: 33.6 months). Results Fifty percent of patients were male. NETs were located mainly in the digestive tract (63.8%) and lung (20.2%). Appendiceal NETs were diagnosed at a significantly younger age than other tumors (41.3 vs. 64.0 years). Overall, a mean pathology report quality score of 3.0/5 was observed with the highest scores for small bowel NETs. Diagnostic and nuclear imaging was performed in 74.5% and 29.8% of cases, respectively. Seventyâfour percent of the population survived until the end of the observation period with highest survival rates for appendiceal and small bowel NETs. Conclusion Overall, epidemiological results were comparable with findings in the literature. Gastrointestinal NETs met most of the requirements of qualitative pathology reporting and diagnostic imaging as listed in the European Neuroendocrine Tumor Society consensus guidelines. However, consensus with regard to bronchopulmonary NETs is still scarce and remains an objective for future research. Moreover, discussing treatment strategies in specialized multidisciplinary tumor boards would facilitate regional care
A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin-hyaluronan dialdehyde (Gel-HDA) Schiff's polymer, and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting. Temperature sweep rheology measurements show a higher sol-gel transition temperature for IPN (30 °C) compared to gold standard GelMA (27 °C). Furthermore, to determine the tunability of the IPN hydrogel, several IPN samples were prepared by combining different ratios of Gel-HDA and GelMA achieving a compressive modulus ranging from 20.6 ± 2.48 KPa to 116.7 ± 14.80 KPa. Our results showed that the mechanical properties and printability at room temperature could be tuned by adjusting the ratios of GelMA and Gel-HDA. To evaluate cell response to the material, MC3T3-E1 mouse pre-osteoblast cells were embedded in hydrogels and 3D-printed, demonstrating excellent cell viability and proliferation after 10 d of 3Din vitroculture, making the IPN an interesting bioink for the fabrication of 3D constructs for tissue engineering applications
In vitro and in vivo evaluation of 3D constructs engineered with human iPSC-derived chondrocytes in gelatin methacryloyl hydrogel
Articular cartilage defects have limited healing potential and, when left untreated, can lead to osteoarthritis. Tissue engineering focuses on regenerating the damaged joint surface, preferably in an early stage. Here, we investigate the regenerative potential of three-dimensional (3D) constructs consisting of human induced pluripotent stem cell (iPSC)-derived chondrocytes in gelatin methacryloyl (GelMA) hydrogel for stable hyaline cartilage production. iPSC-derived chondrocytes are encapsulated in GelMA hydrogel at low (1 x 10(7) ml(-1)) and high (2 x 10(7) ml(-1)) density. In a conventional medium, GelMA hydrogel supports the chondrocyte phenotype, as opposed to cells cultured in 3D in absence of hydrogel. Moreover, encapsulated iPSC-derived chondrocytes preserve their in vivo matrix formation capacity after 21 days in vitro. In differentiation medium, hyaline cartilage-like tissue forms after 21 days, demonstrated by highly sulfated glycosaminoglycans and collagen type II. Matrix deposition is delayed at low encapsulation density, corroborating with lower transcript levels of COL2A1. An ectopic assay in nude mice demonstrates further maturation of the matrix deposited in vitro. Direct ectopic implantation of iPSC-derived chondrocyte-laden GelMA, without in vitro priming, also generates hyaline cartilage-like tissue, albeit less mature. Since it is unclear what maturity upon implantation is desired for joint surface regeneration, this is an attractive technology to generate immature and more mature hyaline cartilage-like tissue
Epidemiological and clinical insights into the enterovirus D68 upsurge in Europe 2021/22 and the emergence of novel B3-derived lineages, ENPEN multicentre study
International audienceEnterovirus D68 (EV-D68) infections are associated with severe respiratory disease and acute flaccid myelitis (AFM). The European Non-Polio Enterovirus Network (ENPEN) aimed to investigate the epidemiological and genetic characteristics of EV-D68 and its clinical impact during the fall-winter season of 2021/22. From 19 European countries, 58 institutes reported 10,481 (6.8%) EV-positive samples of which 1,004 (9.6%) were identified as EV-D68 (852 respiratory samples). Clinical data was reported for 969 cases. 78.9% of infections were reported in children (0-5 years); 37.9% of cases were hospitalised. Acute respiratory distress was commonly noted (93.1%) followed by fever (49.4%). Neurological problems were observed in 6.4% of cases with six reported with AFM. Phylodynamic/Nextstrain and phylogenetic analyses based on 694 sequences showed the emergence of two novel B3-derived lineages, with no regional clustering. In conclusion, we describe a large-scale EV-D68 European upsurge with severe clinical impact and the emergence of B3-derived lineages
Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
International audienceDuring their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100ââMâ, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93ââGpcâ3âyrâ1 in comoving units at the 90%Â confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits
First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data
International audienceWe report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100Â Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7ââ[1/Hz]. At the frequency of best strain sensitivity, near 100Â Hz, we set 90% confidence upper limits of 1.8Ă10-25. At the low end of our frequency range, 20Â Hz, we achieve upper limits of 3.9Ă10-24. At 55Â Hz we can exclude sources with ellipticities greater than 10-5 within 100Â pc of Earth with fiducial value of the principal moment of inertia of 1038ââkgâm2