7 research outputs found

    Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings

    Get PDF
    In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-α1, -α2, -γ1, and -δ, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-γ1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-γ 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PAPLD signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity

    Changes of the cytosol redox states as an element of communication between the nucleus and mitochondria

    No full text
    Wydział Biologii: Instytut Biologii Molekularnej i BiotechnologiiZakład BioenergetykiZależny od potencjału kanał o selektywności anionowej (VDAC) bierze udział w transporcie metabolitów przez zewnętrzną błonę mitochondriów. Kanał został zidentyfikowany w 1976 roku i od tego czasu jest obiektem intensywnych badań. VDAC reguluje funkcjonowanie mitochondriów, m. in. pełni zasadniczą rolę w procesie apoptozy. Wykorzystując mutanty Saccharomyces cerevisiae, pozbawone jednej z izoform białka VDAC, w warunkach kontrolowanego stanu oksydacyjno – redukcyjnego (redoks) w mitochondriach i cytozolu, stwierdzono, że VDAC jest zaangażowany w wyznaczanie wewnątrzkomórkowych stanów redoks. Te z kolei okazały się ważnym elementem regulacji poziomu ekspresji białek, ich aktywności, jak również poziomu kodujących je mRNA. Wśród badanych białek znalazły się podjednostki kompleksów importowych mitochondrium, enzymy antyoksydacyjne, białka wrażliwe na zmiany wewnątrzkomórkowych stanów redoks, jądrowe czynniki transkrypcyjne, jak również białka uczestniczące w komunikacji jądro – mitochondrium. Zatem VDAC jest ważnym elementem sygnalizacji, kontrolującej funkcje mitochondrium przez wkład w wewnątrzkomórkowy stan redoks.Metabolite exchange across the mitochondrial outer membrane is mediated by voltage-dependent anion-selective channel (VDAC). This channel was identified in 1976 and since that time has been extensively studied. VDAC is regarded as dynamic regulator, or even governor, of mitochondrial functions and it has been shown that VDAC plays a crucial role in apoptosis execution. Using Saccharomyces cerevisiae mutants depleted of either isoform of VDAC under conditions of controlled modifications of intracellular (mitochondria and cytosol) reduction/oxidation (redox) states I have found that VDAC is involved in determination of intracellular redox states and the states are important for regulation of cellular protein expression (also at the level of their encoding mRNA) and activity. These proteins involve subunits of mitochondrial protein import machinery, antioxidant enzymes, nuclear proteins sensitive to changes of the intracellular redox states including the nuclear transcription factors as well as proteins participating in communication between mitochondria and the nucleus. In conclusion, VDAC appears to be an important element of a protein network that control functions of mitochondria by contributing to the intracellular redox states

    Changes of the cytosol redox states as an element of communication between the nucleus and mitochondria

    No full text
    Wydział Biologii: Instytut Biologii Molekularnej i BiotechnologiiZakład BioenergetykiZależny od potencjału kanał o selektywności anionowej (VDAC) bierze udział w transporcie metabolitów przez zewnętrzną błonę mitochondriów. Kanał został zidentyfikowany w 1976 roku i od tego czasu jest obiektem intensywnych badań. VDAC reguluje funkcjonowanie mitochondriów, m. in. pełni zasadniczą rolę w procesie apoptozy. Wykorzystując mutanty Saccharomyces cerevisiae, pozbawone jednej z izoform białka VDAC, w warunkach kontrolowanego stanu oksydacyjno – redukcyjnego (redoks) w mitochondriach i cytozolu, stwierdzono, że VDAC jest zaangażowany w wyznaczanie wewnątrzkomórkowych stanów redoks. Te z kolei okazały się ważnym elementem regulacji poziomu ekspresji białek, ich aktywności, jak również poziomu kodujących je mRNA. Wśród badanych białek znalazły się podjednostki kompleksów importowych mitochondrium, enzymy antyoksydacyjne, białka wrażliwe na zmiany wewnątrzkomórkowych stanów redoks, jądrowe czynniki transkrypcyjne, jak również białka uczestniczące w komunikacji jądro – mitochondrium. Zatem VDAC jest ważnym elementem sygnalizacji, kontrolującej funkcje mitochondrium przez wkład w wewnątrzkomórkowy stan redoks.Metabolite exchange across the mitochondrial outer membrane is mediated by voltage-dependent anion-selective channel (VDAC). This channel was identified in 1976 and since that time has been extensively studied. VDAC is regarded as dynamic regulator, or even governor, of mitochondrial functions and it has been shown that VDAC plays a crucial role in apoptosis execution. Using Saccharomyces cerevisiae mutants depleted of either isoform of VDAC under conditions of controlled modifications of intracellular (mitochondria and cytosol) reduction/oxidation (redox) states I have found that VDAC is involved in determination of intracellular redox states and the states are important for regulation of cellular protein expression (also at the level of their encoding mRNA) and activity. These proteins involve subunits of mitochondrial protein import machinery, antioxidant enzymes, nuclear proteins sensitive to changes of the intracellular redox states including the nuclear transcription factors as well as proteins participating in communication between mitochondria and the nucleus. In conclusion, VDAC appears to be an important element of a protein network that control functions of mitochondria by contributing to the intracellular redox states

    Carbon dioxide and MAPK signalling: towards therapy for inflammation

    No full text
    Abstract Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient’s condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3 −) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation–induced responses in lungs and related to mitochondria are also discussed. Video Abstrac
    corecore