27 research outputs found

    Automation in cell and gene therapy manufacturing:from past to future

    Get PDF
    As more and more cell and gene therapies are being developed and with the increasing number of regulatory approvals being obtained, there is an emerging and pressing need for industrial translation. Process efficiency, associated cost drivers and regulatory requirements are issues that need to be addressed before industrialisation of cell and gene therapies can be established. Automation has the potential to address these issues and pave the way towards commercialisation and mass production as it has been the case for ‘classical’ production industries. This review provides an insight into how automation can help address the manufacturing issues arising from the development of large-scale manufacturing processes for modern cell and gene therapy. The existing automated technologies with applicability in cell and gene therapy manufacturing are summarized and evaluated here

    Scale-up of an intensified bioprocess for the expansion of bovine adipose-derived stem cells (bASCs) in stirred tank bioreactors

    Get PDF
    Cultivated meat is an emerging field, aiming to establish the production of animal tissue for human consumption in an in vitro environment, eliminating the need to raise and slaughter animals for their meat. To realise this, the expansion of primary cells in a bioreactor is needed to achieve the high cell numbers required. The aim of this study was to develop a scalable, microcarrier based, intensified bioprocess for the expansion of bovine adipose-derived stem cells as precursors of fat and muscle tissue. The intensified bioprocess development was carried out initially in spinner flasks of different sizes and then translated to fully controlled litre scale benchtop bioreactors. Bioprocess intensification was achieved by utilising the previously demonstrated bead-to-bead transfer phenomenon and through the combined addition of microcarrier and medium to double the existing surface area and working volume in the bioreactor. Choosing the optimal time point for the additions was critical in enhancing the cell expansion. A significant fold increase of 114.19 ± 1.07 was obtained at the litre scale in the intensified bioprocess compared to the baseline (**p < .005). The quality of the cells was evaluated pre- and post-expansion and the cells were found to maintain their phenotype and differentiation capacity

    Needle to needle robot-assisted manufacture of cell therapy products

    Get PDF
    Advanced therapeutic medicinal products (ATMPs) have emerged as novel therapies for untreatable diseases, generating the need for large volumes of high-quality, clinically-compliant GMP cells to replace costly, high-risk and limited scale manual expansion processes. We present the design of a fully automated, robot-assisted platform incorporating the use of multiliter stirred tank bioreactors for scalable production of adherent human stem cells. The design addresses a needle-to-needle closed process incorporating automated bone marrow collection, cell isolation, expansion, and collection into cryovials for patient delivery. AUTOSTEM, a modular, adaptable, fully closed system ensures no direct operator interaction with biological material; all commands are performed through a graphic interface. Seeding of source material, process monitoring, feeding, sampling, harvesting and cryopreservation are automated within the closed platform, comprising two clean room levels enabling both open and closed processes. A bioprocess based on human MSCs expanded on microcarriers was used for proof of concept. Utilizing equivalent culture parameters, the AUTOSTEM robot-assisted platform successfully performed cell expansion at the liter scale, generating results comparable to manual production, while maintaining cell quality postprocessing

    SKYSURF: Constraints on Zodiacal Light and Extragalactic Background Light through Panchromatic HST All-Sky Surface-Brightness Measurements: I. Survey Overview and Methods

    Full text link
    We give an overview and describe the rationale, methods, and testing of the Hubble Space Telescope (HST) Archival Legacy project "SKYSURF." SKYSURF uses HST's unique capability as an absolute photometer to measure the ~0.2-1.7 μ\mum sky surface brightness (SB) from 249,861 WFPC2, ACS, and WFC3 exposures in ~1400 independent HST fields. SKYSURF's panchromatic dataset is designed to constrain the discrete and diffuse UV to near-IR sky components: Zodiacal Light (ZL; inner Solar System), Kuiper Belt Objects (KBOs; outer Solar System), Diffuse Galactic Light (DGL), and the discrete plus diffuse Extragalactic Background Light (EBL). We outline SKYSURF's methods to: (1) measure sky-SB levels between its detected objects; (2) measure the integrated discrete EBL, most of which comes from AB\simeq17-22 mag galaxies; and (3) estimate how much diffuse light may exist in addition to the extrapolated discrete galaxy counts. Simulations of HST WFC3/IR images with known sky-values and gradients, realistic cosmic ray (CR) distributions, and star plus galaxy counts were processed with nine different algorithms to measure the "Lowest Estimated Sky-SB" (LES) in each image between the discrete objects. The best algorithms recover the inserted LES values within 0.2% when there are no image gradients, and within 0.2-0.4% when there are 5-10% gradients. SKYSURF requires non-standard re-processing of these HST images that includes restoring the lowest sky-level from each visit into each drizzled image. We provide a proof of concept of our methods from the WFC3/IR F125W images, where any residual diffuse light that HST sees in excess of the Kelsall et al. (1998) Zodiacal model prediction does not depend on the total object flux that each image contains. This enables us to present our first SKYSURF results on diffuse light in Carleton et al. (2022).Comment: Accepted to AJ; see accompanying paper Carleton et al. 2022: arXiv:2205.06347. Comments welcome

    Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes

    Get PDF
    BACKGROUND: Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias) – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP) is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components. METHODS: Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX) for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX. RESULTS: We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc). In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II) and Npr3 (natriuretic peptide decoy receptor) genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor), as well as the Npr2 gene (encoding the CNP receptor). CONCLUSION: Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine factors

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    Objective: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and crossvalidated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS metaanalysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. Methods: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. Results: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values &lt;5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors. Conclusions: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.</p

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    OBJECTIVE: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. METHODS: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. RESULTS: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values \u3c5×10 CONCLUSIONS: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore