156 research outputs found
Bypassing the structural bottleneck in the ultrafast melting of electronic order
The emergent properties of quantum materials, such as symmetry-broken phases
and associated spectral gaps, can be effectively manipulated by ultrashort
photon pulses. Impulsive optical excitation generally results in a complex
non-equilibrium electron and lattice dynamics that involves multiple processes
on distinct timescales, and a common conception is that for times shorter than
about 100 fs the gap in the electronic spectrum is not seriously affected by
lattice vibrations. Here, we directly monitor the photo-induced collapse of the
spectral gap in a canonical charge-density-wave material, blue bronze
Rb0.3MoO3. We find that ultra-fast (about 60 fs) vibrational disordering due to
efficient hot-electron energy dissipation quenches the gap significantly faster
than the typical structural bottleneck time corresponding to one half-cycle
oscillation (about 315 fs) of the coherent charge-density-wave amplitude mode.
This result not only demonstrates the importance of incoherent lattice motion
in the photo-induced quenching of electronic order, but also resolves the
perennial debate about the nature of the spectral gap in a coupled
electron-lattice system
Recommended from our members
Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is used to study the electronic structure dynamics in BaFe2As2 around the high-symmetry points Πand M. A global oscillation of the Fermi level at the frequency of the A1g(As) phonon mode is observed. It is argued that this behavior reflects a modulation of the effective chemical potential in the photoexcited surface region that arises from the high sensitivity of the band structure near the Fermi level to the A1g(As) phonon mode combined with a low electron diffusivity perpendicular to the layers. The results establish a novel way to tune the electronic properties of iron pnictides: coherent control of the effective chemical potential. The results further suggest that the equilibration time for the effective chemical potential needs to be considered in the ultrafast electronic structure dynamics of materials with weak interlayer coupling. © 2014 American Physical Society
Ultrafast modulation of the chemical potential in BaFeAs by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is
used to study the electronic structure dynamics in BaFeAs around the
high-symmetry points and . A global oscillation of the Fermi level
at the frequency of the (As) phonon mode is observed. It is argued that
this behavior reflects a modulation of the effective chemical potential in the
photoexcited surface region that arises from the high sensitivity of the band
structure near the Fermi level to the phonon mode combined with a low
electron diffusivity perpendicular to the layers. The results establish a novel
way to tune the electronic properties of iron pnictides: coherent control of
the effective chemical potential. The results further suggest that the
equilibration time for the effective chemical potential needs to be considered
in the ultrafast electronic structure dynamics of materials with weak
interlayer coupling.Comment: 6 pages, 3 figure
Extreme timescale core-level spectroscopy with tailored XUV pulses
A new approach for few-femtosecond time-resolved photoelectron spectroscopy
in condensed matter that balances the combined needs for both temporal and
energy resolution is demonstrated. Here, the method is designed to investigate
a prototypical Mott insulator, tantalum disulphide (1T-TaS2), which transforms
from its charge-density-wave ordered Mott insulating state to a conducting
state in a matter of femtoseconds. The signature to be observed through the
phase transition is a charge-density-wave induced splitting of the Ta 4f
core-levels, which can be resolved with sub-eV spectral resolution. Combining
this spectral resolution with few-femtosecond time resolution enables the
collapse of the charge ordered Mott state to be clocked. Precise knowledge of
the sub-20-femtosecond dynamics will provide new insight into the physical
mechanism behind the collapse and may reveal Mott physics on the timescale of
electronic hopping.Comment: 20 pages, 6 figure
On the survival of Floquet-Bloch states in the presence of scattering
Floquet theory has spawned many exciting possibilities for electronic
structure control with light with enormous potential for future applications.
The experimental realization in solids, however, largely remains pending. In
particular, the influence of scattering on the formation of Floquet-Bloch
states remains poorly understood. Here we combine time- and angle-resolved
photoemission spectroscopy with time-dependent density functional theory and a
two-level model with relaxation to investigate the survival of Floquet-Bloch
states in the presence of scattering. We find that Floquet-Bloch states will be
destroyed if scattering -- activated by electronic excitations -- prevents the
Bloch electrons from following the driving field coherently. The two-level
model also shows that Floquet-Bloch states reappear at high field intensities
where energy exchange with the driving field dominates over energy dissipation
to the bath. Our results clearly indicate the importance of long scattering
times combined with strong driving fields for the successful realization of
various Floquet phenomena.Comment: 27 pages, 5 figue
Ultrafast doublon dynamics in photoexcited -
Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two- dimensional transition-metal dichalcogenide 1T-TaS2, we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping â/Jâ14 fs. Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal- insulator transition suggests a way to modify doublon relaxation on the few- femtosecond timescale
Availability of age-appropriate paediatric formulations in the Netherlands: The need in daily clinical practice remains
Objectives: To quantify the availability of authorised, age-appropriate paediatric medicines in clinical practice in the Netherlands and to identify gaps by assessing dispensing practice in a paediatric hospital. Methods: The availability of age-appropriate formulations was assessed by conducting a survey on the use of pharmacy compounded medicines among the paediatric hospitals in the Netherlands, and by analysing dispensing data of oral medication from the inpatient pharmacy of the largest paediatric hospital in the Netherlands. The age-appropriateness of the dispensed formulations was assessed on two aspects: dose-capability and acceptability. Liquid drug products that are unsuitable due to the presence of potentially harmful excipients, were identified based on the dosage in clinical practice. Results: For 129 out of 139 drug substances included in the survey (93%), at least one of the eight respondents stated to use a pharmacy compounded product to meet the needs of their paediatric patients. The age-appropriateness of medicines dispensed from the inpatient pharmacy increased with age, and was higher for non-intensive care unit (ICU) patients than for ICU patients. We identified 15 drug products causing excipient exposure above the European Medicines Agency-recommended values. Conclusions: This study confirms there is still a large need for age-appropriate formu
Pharmacokinetic Targets for Therapeutic Drug Monitoring of Small Molecule Kinase Inhibitors in Pediatric Oncology
In recent years new targeted small molecule kinase inhibitors have become available for pediatric patients with cancer. Relationships between drug exposure and treatment response have been established for several of these drugs in adults. Following these exposureâresponse relationships, pharmacokinetic (PK) target minimum plasma rug concentration at the end of a dosing interval (Cmin) values to guide therapeutic drug monitoring (TDM) in adults have been proposed. Despite the fact that variability in PK may be even larger in pediatric patients, TDM is only sparsely applied in pediatric oncology. Based on knowledge of the PK, mechanism o
PENGARUH TEKANAN KETAATAN DAN KOMPLEKSITAS TUGAS TERHADAP AUDIT JUDGMENT (Survey Terhadap Lima Kantor AkuntanPublik di Kota Bandung)
ABSTRAK
Seperti yang kita ketahui bahwa seorang auditor dalam melakukan tugasnya membuat audit judgment dipengaruhi banyak faktor, baik bersifat teknis dan non teknis. Salah satu faktor non teknis adalah aspek perilaku individual. Aspek perilaku individu, sebagai salah satu faktor yang banyak mempengaruhi pembuatan audit judgment. Pada penelitian ini ada beberapa faktor yang mempengaruhi audit judgment yaitu tekanan ketaatan dan kompleksitas tugas.
Dalam penelitian ini penullis ingin mengetahui sejauh mana âtekanan ketaatan dan kompleksitas tugas terhadap audit judgmentâ. Sedangkan tujuan dari penelitian ini adalah untuk mengetahui dan mempelajari tekanan ketaatan dan kompleksitas tugas terhadap audit judgment.
Hipotesis yang diuji dalam penelitian ini adalah â jika tekanan ketaatan dan kompleksitas tugas baik, maka audit judgment akan meningkat ( baik pula)â. Hipotesis ini berdasarkan asumsi bahwa tekanan ketaatan dan kompleksitas tugas berpengaruh terhadap audit judgment.dalam penelitian ini penulis menggunakan metode deskriptif asosiatif dengan pendekatan survey dan tes statistik. Penelitian ini terdiri dari atas variabel X1 dan X2 dan audit judgment sebagai veriabel Y atau variabel independen. Uji statistik dilakukan dengan mengolah data dari hasil jawaban kuesioner.
Dalam penelitian ini, peulis menyebarkan angket kepada 5 Kantor Akuntan Publik di Kota Bandung khusunya untuk para auditor. Pengumpulan data dilakukan dengan cara penyebaran kuesioner yang telah diuji validitasnya dan reabilitasnya. Penelitian ini dilakukan di 5 KAP di Kota Bandung. Pengambilan sampel ini menggunakan purposive sampling berukuran 28 orang responden.
Untuk uji hipotesis penelitian, penulis melakukannya dengan uji t untuk masing-masing variabel X1,X2, dan Y. Dari hasil uji tHitung tekanan ketaatan terhadap audit judgment tHitung =4,178>ttabel = 1.705 kompleksitas tugas terhadap audit judgment 5 tHitung = 3.364 > ttabel = 1,705. Maka, dari hasil uji hipotesis tersebut penulis menyimpulkan bahwa hipotesis penelitian diterima (Ho ditolak, Ha diterima) artinya terdapat pengaruh antara terkanan ketaatan terhadap audit judgment dan kompleksitas tugas terhadap audit judgment
Untuk mencari besarnya pengaruh Tekanan ketaatan dan Kompleksitas Tugas terhadap Audit Judgment secara simultan penulis melakukannya dengan uji f dengan koefisien determinasi (KD). Dari hasil uji fhitung dan > f table yaitu 16,182>3,370.
Kata kunci : Tekanan Ketaatan dan Kompleksitas tugas Terhadap Audit Judgmen
- âŠ